1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#![doc(html_logo_url = "https://cdn.rawgit.com/urschrei/polylabel-rs/7a07336e85572eb5faaf0657c2383d7de5620cd8/ell.svg",
       html_root_url = "https://urschrei.github.io/polylabel-rs/")]
//! This crate provides a Rust implementation of the [Polylabel](https://github.com/mapbox/polylabel) algorithm
use std::cmp::Ordering;
use std::collections::BinaryHeap;

extern crate num_traits;
use self::num_traits::{Float, FromPrimitive, Signed};

extern crate geo;
use self::geo::{Point, Polygon};
use self::geo::algorithm::boundingbox::BoundingBox;
use self::geo::algorithm::distance::Distance;
use self::geo::algorithm::area::Area;
use self::geo::algorithm::centroid::Centroid;
use self::geo::algorithm::contains::Contains;

mod ffi;
pub use ffi::{polylabel_ffi, Array, WrapperArray, Position};

#[allow(dead_code)]
pub extern "C" fn spare() {
    println!("");
}

// A helper struct for `polylabel`
#[derive(Debug)]
struct Cell<T>
where
    T: Float + Signed,
{
    // Centroid coordinates
    x: T,
    y: T,
    // Half the cell size
    h: T,
    // Distance from centroid to polygon
    distance: T,
    // Maximum distance to polygon within a cell
    max_distance: T,
}

impl<T> Cell<T>
where
    T: Float + Signed,
{
    /// Creates a new Cell
    pub fn new(x: T, y: T, h: T, distance: T, max_distance: T) -> Cell<T> {
        Cell {
            x: x,
            y: y,
            h: h,
            distance: distance,
            max_distance: max_distance,
        }
    }
}

impl<T> Ord for Cell<T>
where
    T: Float + Signed,
{
    fn cmp(&self, other: &Cell<T>) -> std::cmp::Ordering {
        self.max_distance.partial_cmp(&other.max_distance).unwrap()
    }
}
impl<T> PartialOrd for Cell<T>
where
    T: Float + Signed,
{
    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}
impl<T> Eq for Cell<T>
where
    T: Float + Signed,
{
}
impl<T> PartialEq for Cell<T>
where
    T: Float + Signed,
{
    fn eq(&self, other: &Cell<T>) -> bool
    where
        T: Float,
    {
        self.max_distance == other.max_distance
    }
}

// Signed distance from a Cell's centroid to a Polygon's outline
// Returned value is negative if the point is outside the polygon's exterior ring
fn signed_distance<T>(x: &T, y: &T, polygon: &Polygon<T>) -> T
where
    T: Float,
{
    let point = Point::new(*x, *y);
    let inside = polygon.contains(&point);
    // Use LineString distance, because Polygon distance returns 0.0 for inside
    let distance = point.distance(&polygon.exterior);
    if inside { distance } else { -distance }
}

// Add a new quadtree node to the binary heap
fn add_quad<T>(mpq: &mut BinaryHeap<Cell<T>>, cell: &Cell<T>, nh: &T, polygon: &Polygon<T>)
where
    T: Float + Signed,
{
    let two = T::one() + T::one();
    // 1
    let mut new_dist = signed_distance(&(cell.x - *nh), &(cell.y - *nh), polygon);
    mpq.push(Cell::new(
        cell.x - *nh,
        cell.y - *nh,
        *nh,
        new_dist,
        new_dist + *nh * two.sqrt(),
    ));
    // 2
    new_dist = signed_distance(&(cell.x + *nh), &(cell.y - *nh), polygon);
    mpq.push(Cell::new(
        cell.x + *nh,
        cell.y - *nh,
        *nh,
        new_dist,
        new_dist + *nh * two.sqrt(),
    ));
    // 3
    new_dist = signed_distance(&(cell.x - *nh), &(cell.y + *nh), polygon);
    mpq.push(Cell::new(
        cell.x - *nh,
        cell.y + *nh,
        *nh,
        new_dist,
        new_dist + *nh * two.sqrt(),
    ));
    // 4
    new_dist = signed_distance(&(cell.x + *nh), &(cell.y + *nh), polygon);
    mpq.push(Cell::new(
        cell.x + *nh,
        cell.y + *nh,
        *nh,
        new_dist,
        new_dist + *nh * two.sqrt(),
    ));
}


/// Calculate a Polygon's ideal label position by calculating its ✨pole of inaccessibility✨
///
/// The calculation uses an [iterative grid-based algorithm](https://github.com/mapbox/polylabel#how-the-algorithm-works).
///
/// # Examples
///
/// ```
/// use polylabel::polylabel;
/// extern crate geo;
/// use self::geo::{Point, LineString, Polygon};
///
/// // An approximate `L` shape
/// let coords = vec![
///    (0.0, 0.0),
///    (4.0, 0.0),
///    (4.0, 1.0),
///    (1.0, 1.0),
///    (1.0, 4.0),
///    (0.0, 4.0),
///    (0.0, 0.0)];
///
/// let ls = LineString(coords.iter().map(|e| Point::new(e.0, e.1)).collect());
/// let poly = Polygon::new(ls, vec![]);
///
/// // Its centroid lies outside the polygon
/// assert_eq!(poly.centroid(), Point::new(1.3571428571428572, 1.3571428571428572));
///
/// let label_position = polylabel(&poly, &1.0);
/// // Optimum label position is inside the polygon
/// assert_eq!(label_position, Point::new(0.5625, 0.5625));
/// ```
///
pub fn polylabel<T>(polygon: &Polygon<T>, tolerance: &T) -> Point<T>
where
    T: Float + FromPrimitive + Signed,
{
    // special case for degenerate polygons
    if polygon.area() == T::zero() {
        // best_cell = Cell {
        //     x: polygon.exterior.0[0].x(),
        //     y: polygon.exterior.0[0].y(),
        //     h: T::zero(),
        //     distance: distance,
        //     max_distance: max_distance
        // };
        return Point::new(T::zero(), T::zero());
    }
    let two = T::one() + T::one();
    // Initial best cell values
    let centroid = polygon.centroid().unwrap();
    let bbox = polygon.bbox().unwrap();
    let width = bbox.xmax - bbox.xmin;
    let height = bbox.ymax - bbox.ymin;
    let cell_size = width.min(height);
    // Special case for degenerate polygons
    if cell_size == T::zero() {
        return Point::new(bbox.xmin, bbox.ymin);
    }
    let mut h: T = cell_size / two;
    let distance: T = signed_distance(&centroid.x(), &centroid.y(), polygon);
    let max_distance: T = distance + T::zero() * two.sqrt();

    let mut best_cell = Cell {
        x: centroid.x(),
        y: centroid.y(),
        h: T::zero(),
        distance: distance,
        max_distance: max_distance,
    };

    // special case for rectangular polygons
    let bbox_cell_dist = signed_distance(
        &(bbox.xmin + width / two),
        &(bbox.ymin + height / two),
        polygon,
    );
    let bbox_cell = Cell {
        x: bbox.xmin + width / two,
        y: bbox.ymin + height / two,
        h: T::zero(),
        distance: bbox_cell_dist,
        max_distance: bbox_cell_dist + T::zero() * two.sqrt(),
    };

    if bbox_cell.distance > best_cell.distance {
        best_cell = bbox_cell;
    }

    // Priority queue
    let mut cell_queue: BinaryHeap<Cell<T>> = BinaryHeap::new();
    // Build an initial quadtree node, which covers the Polygon
    let mut x = bbox.xmin;
    let mut y;
    while x < bbox.xmax {
        y = bbox.ymin;
        while y < bbox.ymax {
            let latest_dist = signed_distance(&(x + h), &(y + h), polygon);
            cell_queue.push(Cell {
                x: x + h,
                y: y + h,
                h: h,
                distance: latest_dist,
                max_distance: latest_dist + h * two.sqrt(),
            });
            y = y + cell_size;
        }
        x = x + cell_size;
    }
    // Now try to find better solutions
    while !cell_queue.is_empty() {
        let cell = cell_queue.pop().unwrap();
        // Update the best cell if we find a cell with greater distance
        if cell.distance > best_cell.distance {
            best_cell.x = cell.x;
            best_cell.y = cell.y;
            best_cell.h = cell.h;
            best_cell.distance = cell.distance;
            best_cell.max_distance = cell.max_distance;
        }
        // Bail out of this iteration if we can't find a better solution
        if cell.max_distance - best_cell.distance <= *tolerance {
            continue;
        }
        // Otherwise, add a new quadtree node and start again
        h = cell.h / two;
        add_quad(&mut cell_queue, &cell, &h, polygon);
    }
    // We've exhausted the queue, so return the best solution we've found
    Point::new(best_cell.x, best_cell.y)
}

#[cfg(test)]
mod tests {
    use std::collections::BinaryHeap;
    use super::{polylabel, Cell};
    use geo::{Point, Polygon};
    use geo::contains::Contains;
    #[test]
    // polygons are those used in Shapely's tests
    fn test_polylabel() {
        let coords = include!("poly1.rs");
        let poly = Polygon::new(coords.into(), vec![]);
        let res = polylabel(&poly, &10.000);
        assert_eq!(res, Point::new(59.35615556364569, 121.83919629746435));
    }
    #[test]
    // does a concave polygon contain the calculated point?
    // relevant because the centroid lies outside the polygon in this case
    fn test_concave() {
        let coords = include!("poly2.rs");
        let poly = Polygon::new(coords.into(), vec![]);
        let res = polylabel(&poly, &1.0);
        assert!(poly.contains(&res));
    }
    #[test]
    fn polygon_l_test() {
        // an L shape
        let coords = vec![
            (0.0, 0.0),
            (4.0, 0.0),
            (4.0, 1.0),
            (1.0, 1.0),
            (1.0, 4.0),
            (0.0, 4.0),
            (0.0, 0.0),
        ];
        let poly = Polygon::new(coords.into(), vec![]);
        let res = polylabel(&poly, &0.10);
        assert_eq!(res, Point::new(0.5625, 0.5625));
    }
    #[test]
    fn degenerate_polygon_test() {
        let a_coords = vec![(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (0.0, 0.0)];
        let a_poly = Polygon::new(a_coords.into(), vec![]);
        let a_res = polylabel(&a_poly, &1.0);
        assert_eq!(a_res, Point::new(0.0, 0.0));
    }
    #[test]
    fn degenerate_polygon_test_2() {
        let b_coords = vec![(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)];
        let b_poly = Polygon::new(b_coords.into(), vec![]);
        let b_res = polylabel(&b_poly, &1.0);
        assert_eq!(b_res, Point::new(0.0, 0.0));
    }
    #[test]
    // Is our priority queue behaving as it should?
    fn test_queue() {
        let a = Cell {
            x: 1.0,
            y: 2.0,
            h: 3.0,
            distance: 4.0,
            max_distance: 8.0,
        };
        let b = Cell {
            x: 1.0,
            y: 2.0,
            h: 3.0,
            distance: 4.0,
            max_distance: 7.0,
        };
        let c = Cell {
            x: 1.0,
            y: 2.0,
            h: 3.0,
            distance: 4.0,
            max_distance: 9.0,
        };
        let mut v = vec![];
        v.push(a);
        v.push(b);
        v.push(c);
        let mut q = BinaryHeap::from(v);
        assert_eq!(q.pop().unwrap().max_distance, 9.0);
        assert_eq!(q.pop().unwrap().max_distance, 8.0);
        assert_eq!(q.pop().unwrap().max_distance, 7.0);
    }
}