1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
#![deny(missing_docs)]

//! # Poi
//! a pragmatic point-free theorem prover assistant
//!
//! ```text
//! === Poi Reduce 0.2 ===
//! Type `help` for more information.
//! > and[not]
//! and[not]
//! or			( and[not] => or )
//! ```
//!
//! To run Poi Reduce from your Terminal, type:
//!
//! ```text
//! cargo install --example poireduce poi
//! ```
//!
//! Then, to run:
//!
//! ```text
//! poireduce
//! ```
//!
//! ### Example
//!
//! When computing the length of two concatenated lists,
//! there is a faster way, which is to compute the length of each list and add them together:
//!
//! ```text
//! > (len . concat)(a, b)
//! (len · concat)(a, b)
//! (len · concat)(a)(b)
//! (concat[len] · (len · fst, len · snd))(a)(b)
//! (add · (len · fst, len · snd))(a)(b)
//! <=>  add((len · fst)(a)(b), (len · snd)(a)(b))
//! > add((len · fst)(a)(b), (len · snd)(a)(b))
//! add((len · fst)(a)(b), (len · snd)(a)(b))
//! add((len · fst)(a)(b))((len · snd)(a)(b))
//! add(len(a))((len · snd)(a)(b))
//! add(len(a))(len(b))
//! ```
//!
//! ### Introduction to Poi and Path Semantics
//!
//! In "point-free" or "tacit" programming, functions do not identify the arguments
//! (or "points") on which they operate. See [Wikipedia article](https://en.wikipedia.org/wiki/Tacit_programming).
//!
//! Poi is an implementation of a small subset of [Path Semantics](https://github.com/advancedresearch/path_semantics).
//! In order to explain how Poi works, one needs to explain a bit about Path Semantics.
//!
//! [Path Semantics](https://github.com/advancedresearch/path_semantics) is an extremely expressive language for mathematical programming,
//! which has a "path-space" in addition to normal computation.
//! If normal programming is 2D, then Path Semantics is 3D.
//! Path Semantics is often used in combination with [Category Theory](https://en.wikipedia.org/wiki/Category_theory), [Logic](https://en.wikipedia.org/wiki/Logic), etc.
//!
//! A "path" (or "normal path") is a way of navigating between functions, for example:
//!
//! ```text
//! and[not] <=> or
//! ```
//!
//! Translated into words, this sentence means:
//!
//! ```text
//! If you flip the input and output bits of an `and` function,
//! then you can predict the output directly from the input bits
//! using the function `or`.
//! ```
//!
//! In normal programming, there is no way to express this idea directly,
//! but you can represent the logical relationship as an equation:
//!
//! ```text
//! not(and(a, b)) = or(not(a), not(b))
//! ```
//!
//! This is known as one of [De Morgan's laws](https://en.wikipedia.org/wiki/De_Morgan's_laws).
//!
//! When represented as a commutative diagram, one can visualize the dimensions:
//!
//! ```text
//!          not x not
//!       o ---------> o           o -------> path-space
//!       |            |           |
//!   and |            | or        |
//!       V            V           |
//!       o ---------> o           V
//!            not            computation
//! ```
//!
//! This is written in asymmetric path notation:
//!
//! ```text
//! and[not x not -> not] <=> or
//! ```
//!
//! In symmetric path notation:
//!
//! ```text
//! and[not] <=> or
//! ```
//!
//! Both computation and path-space are directional,
//! meaning that one can not always find the inverse.
//! Composition in path-space is just function composition:
//!
//! ```text
//! f[g][h] <=> f[h . g]
//! ```
//!
//! If one imagines `computation = 2D`, then `computation + path-space = 3D`.
//!
//! Path Semantics can be thought of as "point-free style" sub-set of equations.
//! This sub-set of equations is particularly helpful in programming.
//!
//! ### The Problem of Complexity
//!
//! Efficient mathematical knowledge useful for programming depends on knowing
//! the identity of functions. This means that the more knowledge you want to build,
//! the more functions you need to name and refer to symbolically.
//!
//! This means that mathematical theories using a "birds-eye view" are not as
//! useful to solve specific problems, except as a guide to find the solution.
//! The more general and expressive a theory is, the harder it is to do proof search.
//!
//! As a consequence, theorem proving along both `computation + path-space` is
//! much harder than just theorem proving for `computation`.
//!
//! For example, [Type Theory](https://en.wikipedia.org/wiki/Type_theory) is useful
//! to check that programs are correct, but for higher categories, it becomes
//! increasingly hard to ground the semantics while staying efficient and usable.
//!
//! [Path Semantics](https://github.com/advancedresearch/path_semantics) uses a
//! different approach, which is based on symbols.
//! When a symbol is created, the theory "commits" to preserving the "paths"
//! from the symbol, which is known in [Homotopy Type Theory](https://homotopytypetheory.org/) to correspond to "proofs".
//! Since the symbols themselves encode this relationship to proofs,
//! it means that proofs can be arbitrary complex without affecting complexity.
//!
//! This is different from a pure axiomatic system.
//! In a pure axiomatic system, the symbols do not have meaning except
//! the relationship to each other (the axioms).
//! As a result, you get non-standard interpretations of the Peano axioms.
//! In Path Semantics, if you say "the natural numbers", you *mean* the natural numbers, not the natural numbers as described by the Peano axioms.
//! The symbol "the natural numbers" *is the proof* of what you mean,
//! using the background of path semantical knowledge to interpret it.
//! This is what the "semantics" in Path Semantics means.
//!
//! It is possible to express ideas in Path Semantics which are believed to be true,
//! yet can not be proven to be true in any formal language. Someday, a formal
//! language might be invented to prove the sentence true, but programmers do not
//! wait for this to happen. Instead, they default to pragmatic strategies, such as
//! testing extensively. For example, the Goldebach conjecture has been tested up
//! to some limit, so it holds for all natural numbers below that limit.
//! A pragmatic strategy is what you do when you can not idealize the problem away.
//!
//! Poi uses a pragmatic approach in its design because a lot of proofs in
//! Path Semantics requires no or little type checking in the "point-free style".
//!
//! ### Design of Poi
//!
//! Poi is designed to be used as a Rust library.
//!
//! It means that anybody can create their own tools on top of Poi,
//! without needing a lot of dependencies.
//!
//! Poi uses primarily rewriting-rules for theorem proving.
//! This means that the core design is "stupid" and will do dumb things like running
//! in infinite loops when given the wrong rules.
//!
//! However, this design makes also Poi very flexible, because it can pattern match
//! in any way, independent of computational direction.
//! It is relatively easy to define such rules in Rust code.
//!
//! #### Syntax
//!
//! Poi uses [Piston-Meta](https://github.com/pistondevelopers/meta) to describe its syntax. Piston-Meta is a meta parsing language for human readable text documents.
//! It makes it possible to easily make changes to Poi's grammar,
//! and also preserve backward compatibility.
//!
//! Since Piston-Meta can describe its own grammar rules, it means that future
//! versions of Piston-Meta can parse grammars of old versions of Poi.
//! The old documents can then be transformed into new versions of Poi using synthesis.
//!
//! #### Core Design
//!
//! At the core of Poi, there is the `Expr` structure:
//!
//! ```rust(ignore)
//! /// Function expression.
//! #[derive(Clone, PartialEq, Debug)]
//! pub enum Expr {
//!     /// A symbol that is used together with symbolic knowledge.
//!     Sym(Symbol),
//!     /// Some function that returns a value, ignoring the argument.
//!     ///
//!     /// This can also be used to store values, since zero arguments is a value.
//!     Ret(Value),
//!     /// A binary operation on functions.
//!     Op(Op, Box<Expr>, Box<Expr>),
//!     /// A tuple for more than one argument.
//!     Tup(Vec<Expr>),
//!     /// A list.
//!     List(Vec<Expr>),
//! }
//! ```
//!
//! The simplicity of the `Expr` structure is important and heavily based on
//! advanced path semantical knowledge.
//!
//! A symbol contains every domain-specific symbol and "avatar extensions"
//! of symbols. An "avatar extension" is a technique of integrating information
//! processing from building blocks that have no relations for introspection.
//! This means, that even some variants of `Symbol` are not symbols in a direct sense,
//! they are put there because they "integrate information" of symbols.
//! For example, a variable is classified as a `1-avatar` since it "integrates information" of a single symbol or expression. "Avatar extensions" occur
//! frequently in Path Semantics for very sophisticated mathematical relations, but usually do not need to be represented explicitly.
//! Instead, they are used as a "guide" to design.
//! See the paper [Avatar Graphs](https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/avatar-graphs.pdf) for more information.
//!
//! The `Ret` variant comes from the notation used in [Higher Order Operator Overloading](https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#higher-order-operator-overloading). Instead of describing a value as value,
//! it is thought of as a function of some unknown input type, which returns a known value. For example, if a function returns `2` for all inputs, this is written `\2`.
//! This means that point-free transformations on functions sometimes can compute stuff, without explicitly needing to reference the concrete value directly.
//! See paper [Higher Order Operator Overloading and Existential Path Equations](https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/higher-order-operator-overloading-and-existential-path-equations.pdf) for more information.
//!
//! The `Op` variant generalizes binary operators on functions,
//! such as `Composition`, `Path` (normal path),
//! `Apply` (call a function) and `Constrain` (partial functions).
//!
//! The `Tup` variant represents tuples of expressions, where a singleton (a tuple of one element) is
//! "lifted up" one level. This is used e.g. to transition from `and[not x not -> not]` to `and[not]` without having to write rules for asymmetric cases.
//!
//! The `List` variant represents lists of expressions, e.g. `[1, 2, 3]`.
//! This differs from `Tup` by the property that singletons are not "lifted up".
//!
//! #### Representing Knowledge
//!
//! In higher dimensions of functional programming, the definition of "normalization"
//! depends on the domain specific use of a theory. Intuitively, since there are
//! more directions, what counts as progression toward an answer is somewhat
//! chosen arbitrarily. Therefore, the subjectivity of this choice must be
//! reflected in the representation of knowledge.
//!
//! Poi's representation of knowledge is designed for multi-purposes.
//! Unlike in normal programming, you do not want to always do e.g. evaluation.
//! Instead, you design different tools for different purposes, using the same
//! knowledge.
//!
//! The `Knowledge` struct represents mathematical knowledge in form of rules:
//!
//! ```rust(ignore)
//! /// Represents knowledge about symbols.
//! pub enum Knowledge {
//!     /// A symbol has some definition.
//!     Def(Symbol, Expr),
//!     /// A reduction from a more complex expression into another by normalization.
//!     Red(Expr, Expr),
//!     /// Two expressions that are equivalent but neither normalizes the other.
//!     Eqv(Expr, Expr),
//! }
//! ```
//!
//! The `Def` variant represents a definition.
//! A definition is inlined when evaluating an expression.
//!
//! The `Red` variant represents what counts as "normalization" in a domain specific theory.
//! It can use computation in the sense of normal evaluation, or use path-space.
//! This rule is directional, which means it pattern matches on the first expression
//! and binds variables, which are synthesized using the second expression.
//!
//! The `Eqv` variant represents choices that one can make when traveling along a path.
//! Going in one direction might be as good as another.
//! This is used when it is not clear which direction one should go.
//! This rule is bi-directional, which means one can treat it as a reduction both ways.
//!

use std::sync::Arc;

use self::Expr::*;
use self::Op::*;
use self::Value::*;
use self::Knowledge::*;
use self::Symbol::*;

pub use val::*;
pub use expr::*;
pub use sym::*;
pub use standard_library::*;
pub use parsing::*;
pub use knowledge::*;

mod val;
mod expr;
mod sym;
mod knowledge;
mod standard_library;
mod parsing;

/// Used to global import enum variants.
pub mod prelude {
    pub use super::*;
    pub use super::Expr::*;
    pub use super::Op::*;
    pub use super::Value::*;
    pub use super::Knowledge::*;
    pub use super::Symbol::*;
}

impl Into<Expr> for bool {
    fn into(self) -> Expr {Ret(Bool(self))}
}

impl Into<Expr> for f64 {
    fn into(self) -> Expr {Ret(F64(self))}
}

impl<T, U> Into<Expr> for (T, U)
    where T: Into<Expr>, U: Into<Expr>
{
    fn into(self) -> Expr {Tup(vec![self.0.into(), self.1.into()])}
}

impl<T0, T1, T2> Into<Expr> for (T0, T1, T2)
    where T0: Into<Expr>, T1: Into<Expr>, T2: Into<Expr>
{
    fn into(self) -> Expr {Tup(vec![self.0.into(), self.1.into(), self.2.into()])}
}

impl Expr {
    /// Returns available equivalences of the expression, using a knowledge base.
    pub fn equivalences(&self, knowledge: &[Knowledge]) -> Vec<(Expr, usize)> {
        let mut ctx = Context {vars: vec![]};
        let mut res = vec![];
        for i in 0..knowledge.len() {
            if let Eqv(a, b) = &knowledge[i] {
                if ctx.bind(a, self) {
                    let expr = ctx.substitute(b).unwrap();
                    res.push((expr, i));
                    ctx.vars.clear();
                } else if ctx.bind(b, self) {
                    let expr = ctx.substitute(a).unwrap();
                    res.push((expr, i));
                    ctx.vars.clear();
                }
            }
        }
        res
    }

    /// Evaluate an expression using a knowledge base.
    ///
    /// This combines reductions and inlining of all symbols.
    pub fn eval(&self, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        let mut me = self.clone();
        loop {
            let expr = me.reduce_all(knowledge).inline_all(knowledge)?;
            if expr == me {break};
            me = expr;
        }
        Ok(me)
    }

    /// Reduces an expression using a knowledge base, until it can not be reduces further.
    pub fn reduce_all(&self, knowledge: &[Knowledge]) -> Expr {
        let mut me = self.clone();
        while let Ok((expr, _)) = me.reduce(knowledge) {me = expr}
        me
    }

    /// Reduces expression one step using a knowledge base.
    pub fn reduce(&self, knowledge: &[Knowledge]) -> Result<(Expr, usize), Error> {
        let mut ctx = Context {vars: vec![]};
        let mut me: Option<(Expr, usize)> = None;
        for i in 0..knowledge.len() {
            if let Red(a, b) = &knowledge[i] {
                if ctx.bind(a, self) {
                    let expr = ctx.substitute(b)?;
                    me = Some((expr, i));
                    break;
                }
            }
        }

        match self {
            Op(op, a, b) => {
                if let Ok((a, i)) = a.reduce(knowledge) {
                    // Prefer the reduction that matches the first rule.
                    if let Some((expr, j)) = me {if j < i {return Ok((expr, j))}};
                    return Ok((Op(*op, Box::new(a), b.clone()), i));
                }
                if let Ok((b, i)) = b.reduce(knowledge) {
                    // Prefer the reduction that matches the first rule.
                    if let Some((expr, j)) = me {if j < i {return Ok((expr, j))}};
                    return Ok((Op(*op, a.clone(), Box::new(b)), i));
                }
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    if let Ok((n, j)) = a[i].reduce(knowledge) {
                        // Prefer the reduction that matches the first rule.
                        if let Some((expr, k)) = me {if k < j {return Ok((expr, k))}};
                        res.push(n);
                        res.extend(a[i+1..].iter().map(|n| n.clone()));
                        return Ok((Tup(res), j));
                    } else {
                        res.push(a[i].clone());
                    }
                }
            }
            _ => {}
        }

        if let Some((expr, i)) = me {
            Ok((expr, i))
        } else {
            Err(Error::NoReductionRule)
        }
    }

    /// Inlines all symbols using a knowledge base.
    ///
    /// Ignores missing definitions in domain constraints.
    pub fn inline_all(&self, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        match self {
            Sym(a) => {
                for i in 0..knowledge.len() {
                    if let Def(b, c) = &knowledge[i] {
                        if b == a {
                            return Ok(c.clone());
                        }
                    }
                }
                Err(Error::NoDefinition)
            }
            Ret(_) => Ok(self.clone()),
            Op(op, a, b) => {
                if let Constrain = op {
                    let a = a.inline_all(knowledge)?;
                    match b.inline_all(knowledge) {
                        Err(Error::NoDefinition) => Ok(a),
                        Err(err) => Err(err),
                        Ok(b) => Ok(constr(a, b)),
                    }
                } else {
                    Ok(Op(
                        *op,
                        Box::new(a.inline_all(knowledge)?),
                        Box::new(b.inline_all(knowledge)?)
                    ))
                }
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline_all(knowledge)?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline_all(knowledge)?);
                }
                Ok(List(res))
            }
        }
    }

    /// Inline a symbol using a knowledge base.
    pub fn inline(&self, sym: &Symbol, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        match self {
            Sym(a) if a == sym => {
                for i in 0..knowledge.len() {
                    if let Def(b, c) = &knowledge[i] {
                        if b == a {
                            return Ok(c.clone());
                        }
                    }
                }
                Err(Error::NoDefinition)
            }
            Sym(_) | Ret(_) => Ok(self.clone()),
            Op(op, a, b) => {
                Ok(Op(
                    *op,
                    Box::new(a.inline(sym, knowledge)?),
                    Box::new(b.inline(sym, knowledge)?)
                ))
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline(sym, knowledge)?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline(sym, knowledge)?);
                }
                Ok(List(res))
            }
        }
    }
}

/// Stores variables bound by context.
pub struct Context {
    /// Contains the variables in the context.
    pub vars: Vec<(Arc<String>, Expr)>,
}

impl Context {
    /// Binds patterns of a `name` expression to a `value` expression.
    pub fn bind(&mut self, name: &Expr, value: &Expr) -> bool {
        match (name, value) {
            (Sym(NoConstrVar(_)), Op(Constrain, _, _)) => {
                self.vars.clear();
                false
            }
            (Sym(Var(_)), Tup(_)) | (Sym(NoConstrVar(_)), Tup(_)) => {
                self.vars.clear();
                false
            }
            (Sym(Var(name)), x) | (Sym(NoConstrVar(name)), x) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == x {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), x.clone()));
                true
            }
            (Sym(RetVar(name)), Ret(_)) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(HeadTail(head, tail)), Tup(list)) => {
                if list.len() < 2 {return false};

                let r = self.bind(head, &list[0]);
                let b: Expr = if list[1..].len() == 1 {
                    list[1].clone()
                } else {
                    Tup(list[1..].into())
                };
                let r = r && self.bind(tail, &b);
                if !r {self.vars.clear()};
                r
            }
            (Sym(Any), _) => true,
            (Sym(a), Sym(b)) if a == b => true,
            (Ret(a), Ret(b)) if a == b => true,
            (Op(op1, a1, b1), Op(op2, a2, b2)) if op1 == op2 => {
                let r = self.bind(a1, a2) && self.bind(b1, b2);
                if !r {self.vars.clear()};
                r
            }
            (Tup(a), Tup(b)) if a.len() == b.len() => {
                let mut all = true;
                for i in 0..a.len() {
                    let r = self.bind(&a[i], &b[i]);
                    if !r {
                        all = false;
                        break;
                    }
                }
                if !all {self.vars.clear()};
                all
            }
            (List(a), List(b)) if a.len() == b.len() => {
                let mut all = true;
                for i in 0..a.len() {
                    let r = self.bind(&a[i], &b[i]);
                    if !r {
                        all = false;
                        break;
                    }
                }
                if !all {self.vars.clear()};
                all
            }
            _ => {
                self.vars.clear();
                false
            }
        }
    }

    /// Substitute free occurences of variables in context.
    ///
    /// This is used on the right side in a reduction rule.
    pub fn substitute(&self, x: &Expr) -> Result<Expr, Error> {
        match x {
            Sym(Var(name)) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        return Ok(self.vars[i].1.clone())
                    }
                }
                Err(Error::CouldNotFind(name.clone()))
            }
            Sym(UnopRetVar(a, f)) => {
                let mut av: Option<Expr> = None;
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == a {
                        av = Some(self.vars[i].1.clone());
                    }
                }
                match av {
                    Some(Ret(F64(a))) => {
                        Ok(match **f {
                            Neg => Ret(F64(-a)),
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    Some(List(a)) => {
                        Ok(match **f {
                            Len => Ret(F64(a.len() as f64)),
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    _ => Err(Error::CouldNotFind(a.clone())),
                }
            }
            Sym(BinopRetVar(a, b, f)) => {
                let mut av: Option<Expr> = None;
                let mut bv: Option<Expr> = None;
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == a {
                        av = Some(self.vars[i].1.clone());
                    }
                    if &self.vars[i].0 == b {
                        bv = Some(self.vars[i].1.clone());
                    }
                }
                match (av, bv) {
                    (Some(Ret(a)), Some(Ret(b))) if **f == Eq => Ok(Ret(Bool(a == b))),
                    (Some(Ret(F64(a))), Some(Ret(F64(b)))) => {
                        Ok(Ret(F64(match **f {
                            Lt => return Ok(Ret(Bool(a < b))),
                            Le => return Ok(Ret(Bool(a <= b))),
                            Gt => return Ok(Ret(Bool(a > b))),
                            Ge => return Ok(Ret(Bool(a >= b))),
                            Add => a + b,
                            Sub => a - b,
                            Mul => a * b,
                            Div => if b == 0.0 {
                                return Err(Error::InvalidComputation)
                            } else {
                                a / b
                            }
                            _ => return Err(Error::InvalidComputation),
                        })))
                    }
                    (Some(List(a)), Some(List(b))) => {
                        Ok(match **f {
                            Concat => {
                                let mut a = a.clone();
                                a.extend(b.iter().map(|n| n.clone()));
                                List(a)
                            }
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    (av, _) => {
                        if av.is_none() {
                            Err(Error::CouldNotFind(a.clone()))
                        } else {
                            Err(Error::CouldNotFind(b.clone()))
                        }
                    }
                }
            }
            Sym(_) | Ret(_) => Ok(x.clone()),
            Op(op, a, b) => {
                Ok(Op(*op, Box::new(self.substitute(a)?), Box::new(self.substitute(b)?)))
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(self.substitute(&a[i])?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(self.substitute(&a[i])?);
                }
                Ok(List(res))
            }
        }
    }
}

/// Represents an error.
#[derive(Debug, PartialEq)]
pub enum Error {
    /// Invalid function for computing something from left side of expression to right side.
    InvalidComputation,
    /// There was no defintion of the symbol.
    NoDefinition,
    /// There was no matching reduction rule.
    NoReductionRule,
    /// Could not find variable.
    CouldNotFind(Arc<String>),
}

/// Binary operation on functions.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Op {
    /// Function composition `f . g`
    Compose,
    /// Path `f[g]`
    Path,
    /// Apply function to some argument.
    Apply,
    /// Constrain function input.
    Constrain,
}

impl Into<Expr> for Symbol {
    fn into(self) -> Expr {Sym(self)}
}

impl Into<Expr> for &'static str {
    fn into(self) -> Expr {Sym(Var(Arc::new(self.into())))}
}

impl Into<Symbol> for &'static str {
    fn into(self) -> Symbol {Var(Arc::new(self.into()))}
}

/// A function applied to some argument.
pub fn app<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Apply, Box::new(a.into()), Box::new(b.into()))
}

/// A function composition.
pub fn comp<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Compose, Box::new(a.into()), Box::new(b.into()))
}

/// A normal path expression.
pub fn path<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Path, Box::new(a.into()), Box::new(b.into()))
}

/// A function domain constraint.
pub fn constr<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Constrain, Box::new(a.into()), Box::new(b.into()))
}

/// An `if` expression.
pub fn _if<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {app(app(If, a), b)}

/// A head-tail pattern match on a tuple.
pub fn head_tail<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    HeadTail(Box::new(a.into()), Box::new(b.into())).into()
}

/// A value variable.
pub fn ret_var<A: Into<String>>(a: A) -> Expr {Sym(RetVar(Arc::new(a.into())))}

/// Compute a binary function.
pub fn binop_ret_var<A: Into<String>, B: Into<String>, F: Into<Symbol>>(a: A, b: B, f: F) -> Expr {
    Sym(BinopRetVar(Arc::new(a.into()), Arc::new(b.into()), Box::new(f.into())))
}

/// Compute a unary function.
pub fn unop_ret_var<A: Into<String>, F: Into<Symbol>>(a: A, f: F) -> Expr {
    Sym(UnopRetVar(Arc::new(a.into()), Box::new(f.into())))
}

/// A function without domain constraints.
pub fn no_constr<A: Into<String>>(a: A) -> Expr {
    Sym(NoConstrVar(Arc::new(a.into())))
}

/// Knowledge about a commuative binary operator.
pub fn commutative<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    Eqv(app(app(s.clone(), a.clone()), b.clone()), app(app(s, b), a))
}

/// Knowledge about an associative binary operator.
pub fn associative<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    let c: Expr = "c".into();
    Eqv(app(app(s.clone(), a.clone()), app(app(s.clone(), b.clone()), c.clone())),
        app(app(s.clone(), app(app(s, a), b)), c))
}

/// Knowledge about a distributive relationship.
pub fn distributive<M: Into<Symbol>, A: Into<Symbol>>(mul: M, add: A) -> Knowledge {
    let mul = mul.into();
    let add = add.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    let c: Expr = "c".into();
    Eqv(app(app(mul.clone(), a.clone()), app(app(add.clone(), b.clone()), c.clone())),
        app(app(add, app(app(mul.clone(), a.clone()), b)), app(app(mul, a), c)))
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn apply_not() {
        let ref std = std();
        let a = app(Not, true);
        let a = a.inline(&Not, std).unwrap();
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, false.into());

        let a = app(Not, false);
        let a = a.inline(&Not, std).unwrap();
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, true.into());
    }

    #[test]
    fn comp_not_not() {
        let ref std = std();
        let a = comp(Not, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Idb.into());
    }

    #[test]
    fn path_not_not() {
        let ref std = std();
        let a = path(Not, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn comp_id() {
        let ref std = std();

        let a = comp(Not, Id);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());

        let a = comp(Id, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn path_not_id() {
        let ref std = std();
        let a = path(Not, Id);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn red_singleton() {
        let ref std = std();
        let a = Tup(vec![true.into()]);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, true.into());
    }
}