1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! Generic implementation of Parallelizable Message Authentication Code (PMAC),
//! otherwise known as OMAC1.
//!
//! # Usage
//! We will use AES-128 block cipher from [aes](https://docs.rs/aes) crate.
//!
//! To get the authentication code:
//!
//! ```rust
//! extern crate pmac;
//! extern crate aes;
//!
//! use aes::Aes128;
//! use pmac::{Pmac, Mac};
//!
//! # fn main() {
//! // Create `Mac` trait implementation, namely PMAC-AES128
//! let mut mac = Pmac::<Aes128>::new_varkey(b"very secret key.").unwrap();
//! mac.input(b"input message");
//!
//! // `result` has type `MacResult` which is a thin wrapper around array of
//! // bytes for providing constant time equality check
//! let result = mac.result();
//! // To get underlying array use `code` method, but be carefull, since
//! // incorrect use of the code value may permit timing attacks which defeat
//! // the security provided by the `MacResult`
//! let code_bytes = result.code();
//! # }
//! ```
//!
//! To verify the message:
//!
//! ```rust
//! # extern crate pmac;
//! # extern crate aes;
//! # use aes::Aes128;
//! # use pmac::{Pmac, Mac};
//! # fn main() {
//! let mut mac = Pmac::<Aes128>::new_varkey(b"very secret key.").unwrap();
//!
//! mac.input(b"input message");
//!
//! # let code_bytes = mac.clone().result().code();
//! // `verify` will return `Ok(())` if code is correct, `Err(MacError)` otherwise
//! mac.verify(&code_bytes).unwrap();
//! # }
//! ```
#![no_std]
extern crate block_cipher_trait;
extern crate dbl;
pub extern crate crypto_mac;

pub use crypto_mac::Mac;
use crypto_mac::{InvalidKeyLength, MacResult};
use block_cipher_trait::BlockCipher;
use block_cipher_trait::generic_array::{GenericArray, ArrayLength};
use block_cipher_trait::generic_array::typenum::Unsigned;
use dbl::Dbl;

use core::{fmt, slice};

type Block<N> = GenericArray<u8, N>;
type ParBlocks<N, M> = GenericArray<GenericArray<u8, N>, M>;

/// Will use only precomputed table up to 16*2^20 = 16 MB of input data
/// (for 128 bit cipher), after that will dynamically calculate L value if
/// needed. In future it can become parameter of `Pmac`.
const LC_SIZE: usize = 20;

/// Generic PMAC instance
#[derive(Clone)]
pub struct Pmac<C>
    where C: BlockCipher + Clone, C::BlockSize: Clone, C::ParBlocks: Clone,
          Block<C::BlockSize>: Dbl
{
    cipher: C,
    l_inv: Block<C::BlockSize>,
    l_cache: [Block<C::BlockSize>; LC_SIZE],
    buffer: ParBlocks<C::BlockSize, C::ParBlocks>,
    tag: Block<C::BlockSize>,
    offset: Block<C::BlockSize>,
    pos: usize,
    counter: usize,
}

#[inline(always)]
fn xor<L: ArrayLength<u8>>(buf: &mut Block<L>, data: &Block<L>) {
    for i in 0..L::to_usize() {
        buf[i] ^= data[i];
    }
}

impl<C> Pmac<C>
    where C: BlockCipher + Clone, C::BlockSize: Clone, C::ParBlocks: Clone,
          Block<C::BlockSize>: Dbl
{
    fn from_cipher(cipher: C) -> Self {
        let mut l0 = Default::default();
        cipher.encrypt_block(&mut l0);

        let mut l_cache: [Block<C::BlockSize>; LC_SIZE] = Default::default();
        l_cache[0] = l0.clone();
        for i in 1..LC_SIZE {
            l_cache[i] = l_cache[i-1].clone().dbl();
        }

        let l_inv = l0.clone().inv_dbl();

        Self {
            cipher, l_inv, l_cache,
            buffer: Default::default(), tag: Default::default(),
            offset: Default::default(),
            pos: 0, counter: 1,
        }
    }

    /// Process full buffer and update tag
    #[inline(always)]
    fn process_buffer(&mut self) {
        let mut offset = self.offset.clone();
        let mut counter = self.counter;
        let mut buf = self.buffer.clone();
        for val in buf.iter_mut() {
            let l = self.get_l(counter);
            xor(&mut offset, &l);
            counter += 1;
            xor(val, &offset);
        }
        self.counter = counter;
        self.offset = offset;

        // encrypt blocks in the buffer
        self.cipher.encrypt_blocks(&mut buf);
        // and xor them into tag
        for val in buf.iter() {
            xor(&mut self.tag, val);
        }
    }

    /// Represent internall buffer as bytes slice (hopefully in future we will
    /// be able to switch `&mut [u8]` to `&mut [u8; BlockSize*ParBlocks]`)
    #[inline(always)]
    fn as_mut_bytes(&mut self) -> &mut [u8] {
        unsafe {
            slice::from_raw_parts_mut(
                &mut self.buffer
                    as *mut ParBlocks<C::BlockSize, C::ParBlocks>
                    as *mut u8,
                C::BlockSize::to_usize()*C::ParBlocks::to_usize(),
            )
        }
    }

    #[inline(always)]
    fn get_l(&self, counter: usize) -> Block<C::BlockSize> {
        let ntz = counter.trailing_zeros() as usize;
        if ntz < LC_SIZE {
            self.l_cache[ntz].clone()
        } else {
            let mut block = self.l_cache[LC_SIZE-1].clone();
            for _ in LC_SIZE-1..ntz {
                block = block.dbl();
            }
            block
        }
    }
}

impl <C> Mac for Pmac<C>
    where C: BlockCipher + Clone, C::BlockSize: Clone, C::ParBlocks: Clone,
          Block<C::BlockSize>: Dbl
{
    type OutputSize = C::BlockSize;
    type KeySize = C::KeySize;

    fn new(key: &GenericArray<u8, Self::KeySize>) -> Self{
        Self::from_cipher(C::new(key))
    }

    fn new_varkey(key: &[u8]) -> Result<Self, InvalidKeyLength> {
        let cipher = C::new_varkey(key).map_err(|_| InvalidKeyLength)?;
        Ok(Self::from_cipher(cipher))
    }

    #[inline]
    fn input(&mut self, mut data: &[u8]) {
        let n = C::BlockSize::to_usize()*C::ParBlocks::to_usize();

        let p = self.pos;
        let rem = n - p;
        if data.len() >= rem {
            let (l, r) = data.split_at(rem);
            data = r;
            self.as_mut_bytes()[p..].clone_from_slice(l);
        } else {
            self.as_mut_bytes()[p..p+data.len()]
                .clone_from_slice(data);
            self.pos += data.len();
            return;
        }

        while data.len() >= n {
            self.process_buffer();

            let (l, r) = data.split_at(n);
            self.as_mut_bytes().clone_from_slice(l);
            data = r;
        }

        self.pos = n;

        if data.len() != 0 {
            self.process_buffer();
            self.as_mut_bytes()[..data.len()].clone_from_slice(data);
            self.pos = data.len();
        }
    }

    fn result(self) -> MacResult<Self::OutputSize> {
        let mut tag = self.tag.clone();
        // Special case for empty input
        if self.pos == 0 {
            tag[0] = 0x80;
            self.cipher.encrypt_block(&mut tag);
            return MacResult::new(tag);
        }

        let bs = C::BlockSize::to_usize();
        let k = self.pos % bs;
        let is_full = k == 0;
        // number of full blocks excluding last
        let n = if is_full { (self.pos/bs) - 1 } else { self.pos/bs };
        assert!(n < C::ParBlocks::to_usize(), "invalid buffer position");

        let mut offset = self.offset.clone();
        let mut counter = self.counter;
        for i in 0..n {
            let mut buf = self.buffer[i].clone();

            let l = self.get_l(counter);
            xor(&mut offset, &l);
            xor(&mut buf, &offset);
            self.cipher.encrypt_block(&mut buf);

            xor(&mut tag, &buf);
            counter += 1;
        }

        if is_full {
            xor(&mut tag, &self.buffer[n]);
            xor(&mut tag, &self.l_inv);
        } else {
            let mut block = self.buffer[n].clone();
            block[k] = 0x80;
            for v in block[k+1..].iter_mut() { *v = 0; }
            xor(&mut tag, &block);
        }

        self.cipher.encrypt_block(&mut tag);
        MacResult::new(tag)
    }

    fn reset(&mut self) {
        self.buffer = Default::default();
        self.tag = Default::default();
        self.offset = Default::default();
        self.pos = 0;
        self.counter = 1;
    }
}

impl<C> fmt::Debug for Pmac<C>
    where C: BlockCipher + Clone + fmt::Debug,
          C::BlockSize: Clone, C::ParBlocks: Clone,
          Block<C::BlockSize>: Dbl
{
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "Pmac-{:?}", self.cipher)
    }
}