1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*!
 * The ```Pluralize``` trait exists to offer a single generic trait which can yield an iterator from any
   reference. This allows generic code to be implemented where the plurality of the generic type is
   flexible. This is accomplished by casting the reference of any single primitive into a single
   element array of the same type and calling the appropriate ```.iter()``` function.

 * In simplest terms if you specify that a generic type has the bounds ```Pluralize< T >``` then that
   type could be a plain old ```T``` or a ```Vec<T>```. In order to make use of this simply call the
   ```.puralize( )``` method and iterate in a for loop.

 * ## Features

 * This crate is fully compatible with ```#![no_std]``` projects, just include a
   ```default-features=false``` directive along with the dependency information in your ```Cargo.toml```

 * ## Limitations

 * This approach does have some limitations you should be aware of.   
   More complex collections which don't use the ```std::slice::``` family of iterators aren't supported.   
   Currently, after the creation of a vector behind a Pluralize binding there is no way to grow that
   vector, it can only be modified using ```.pluralize_mut( )``` which isn't capable of doing anything
   other than modifying preexisting elements.
 */

#![cfg_attr(not(feature="std"), no_std)]

#[cfg(not(feature="std"))]
extern crate alloc;
#[cfg(not(feature="std"))]
use alloc::vec::Vec;
#[cfg(not(feature="std"))]
use core::slice::{Iter, IterMut};
#[cfg(feature="std")]
use std::slice::{Iter, IterMut};


/* NOTE/HACK:
 * I'm on the fence about implementing a pluralize for things like functions and raw pointers

 * I originally tried to do this with specializations, I'm going to just consider that an open problem.
   As that RFC stabilizes especially regarding default types I'll take another crack.
 * The main issue was that default types are opaque to default functions
 */

/// A trait implemented across both collections and single primitives which exposes an iterator
pub trait Pluralize< T > {
    fn pluralize<'a>( &'a self ) -> Iter<'a, T>;
    fn pluralize_mut<'a>( &'a mut self ) -> IterMut<'a, T>;
}

impl< T > Pluralize< T > for Vec<T>
where T: Pluralize< T > /*If T doesn't also Pluralize over T then we aren't using this as a generic,
    we're just making a complicated call to .iter()*/
{
    #[inline(always)]
    fn pluralize<'a>( &'a self ) -> Iter<'a, T> {
        self.iter()
    }

    #[inline(always)]
    fn pluralize_mut<'a>( &'a mut self ) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

macro_rules! impl_tuple_pluralize {
    ($(
        $Tuple:ident {
            $($T:ident),+
        }
    )+) => {
        $(
            impl < $($T,)+ > Pluralize<($($T,)+)>
                for ($($T,)+)
            {
                #[inline(always)]
                fn pluralize<'a>( &'a self ) -> Iter<'a, ($($T,)+)> {
                    unsafe{core::mem::transmute::<&'a($($T,)+), &'a [($($T,)+);1]>(self)}.iter( )
                }
                #[inline(always)]
                fn pluralize_mut<'a>( &'a mut self ) -> IterMut<'a, ($($T,)+)> {
                    unsafe{core::mem::transmute::<&'a mut($($T,)+), &'a mut[($($T,)+);1]>(self)}
                    .iter_mut( )
                }
            }
        )+
    }
}

//Should make an equivelent proc_macro, #[derive(Pluralize)] would take care of the import gore
#[macro_export]
macro_rules! impl_primitive_pluralize {
    ( $($t:ty), + ) => {
        $(
            impl Pluralize<$t> for $t {
                #[inline(always)]
                fn pluralize<'a>( &'a self ) -> Iter<'a, $t> {
                    unsafe{ core::mem::transmute::<&'a $t, &'a [$t;1]>(self)}.iter( )
                }

                #[inline(always)]
                fn pluralize_mut<'a>( &'a mut self ) -> IterMut<'a, $t> {
                    unsafe{ core::mem::transmute::<&'a mut $t, &'a mut[$t;1]>(self)}.iter_mut( )
                }
            }
        )+
    }
}

impl_primitive_pluralize!( i8, i16, i32, i64, i128, isize );
impl_primitive_pluralize!( u8, u16, u32, u64, u128, usize );
impl_primitive_pluralize!( bool, char, f32, f64 );

impl_tuple_pluralize!{
    Tuple1{
        A
    }
    Tuple2{
        A,
        B
    }
    Tuple3{
        A,
        B,
        C
    }
    Tuple4{
        A,
        B,
        C,
        D
    }
    Tuple5{
        A,
        B,
        C,
        D,
        E
    }
    Tuple6{
        A,
        B,
        C,
        D,
        E,
        F
    }
    Tuple7{
        A,
        B,
        C,
        D,
        E,
        F,
        G
    }
    Tuple8{
        A,
        B,
        C,
        D,
        E,
        F,
        G,
        H
    }
    Tuple9{
        A,
        B,
        C,
        D,
        E,
        F,
        G,
        H,
        I
    }
    Tuple10{
        A,
        B,
        C,
        D,
        E,
        F,
        G,
        H,
        I,
        J
    }
    Tuple11{
        A,
        B,
        C,
        D,
        E,
        F,
        G,
        H,
        I,
        J,
        K
    }
    Tuple12{
        A,
        B,
        C,
        D,
        E,
        F,
        G,
        H,
        I,
        J,
        K,
        L
    }
}