1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use super::{CoordTranslate, ReverseCoordTranslate};
use crate::drawing::backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
use crate::style::ShapeStyle;

use std::ops::Range;

/// The trait that indicates we have a ordered and ranged value
/// Which is used to describe the axis
pub trait Ranged {
    /// The type of this value
    type ValueType;

    /// This function maps the value to i32, which is the drawing coordinate
    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32;

    /// This function gives the key points that we can draw a grid based on this
    fn key_points(&self, max_points: usize) -> Vec<Self::ValueType>;

    /// Get the range of this value
    fn range(&self) -> Range<Self::ValueType>;

    /// This function provides the on-axis part of its range
    fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> {
        limit.0..limit.1
    }
}

/// The trait indicates the ranged value can be map reversely, which means
/// an pixel-based cooridinate is given, it's possible to figureout the underlying
/// logic value.
pub trait ReversableRanged: Ranged {
    fn unmap(&self, input: i32, limit: (i32, i32)) -> Option<Self::ValueType>;
}

/// The coordinate described by two ranged value
pub struct RangedCoord<X: Ranged, Y: Ranged> {
    logic_x: X,
    logic_y: Y,
    back_x: (i32, i32),
    back_y: (i32, i32),
}

impl<X: Ranged, Y: Ranged> RangedCoord<X, Y> {
    /// Create a new ranged value coordinate system
    pub fn new<IntoX: Into<X>, IntoY: Into<Y>>(
        logic_x: IntoX,
        logic_y: IntoY,
        actual: (Range<i32>, Range<i32>),
    ) -> Self {
        Self {
            logic_x: logic_x.into(),
            logic_y: logic_y.into(),
            back_x: (actual.0.start, actual.0.end),
            back_y: (actual.1.start, actual.1.end),
        }
    }

    /// Draw the mesh for the coordinate system
    pub fn draw_mesh<E, DrawMesh: FnMut(MeshLine<X, Y>) -> Result<(), E>>(
        &self,
        h_limit: usize,
        v_limit: usize,
        mut draw_mesh: DrawMesh,
    ) -> Result<(), E> {
        let (xkp, ykp) = (
            self.logic_x.key_points(v_limit),
            self.logic_y.key_points(h_limit),
        );

        for logic_x in xkp {
            let x = self.logic_x.map(&logic_x, self.back_x);
            draw_mesh(MeshLine::XMesh(
                (x, self.back_y.0),
                (x, self.back_y.1),
                &logic_x,
            ))?;
        }

        for logic_y in ykp {
            let y = self.logic_y.map(&logic_y, self.back_y);
            draw_mesh(MeshLine::YMesh(
                (self.back_x.0, y),
                (self.back_x.1, y),
                &logic_y,
            ))?;
        }

        Ok(())
    }

    /// Get the range of X axis
    pub fn get_x_range(&self) -> Range<X::ValueType> {
        self.logic_x.range()
    }

    /// Get the range of Y axis
    pub fn get_y_range(&self) -> Range<Y::ValueType> {
        self.logic_y.range()
    }

    pub fn get_x_axis_pixel_range(&self) -> Range<i32> {
        self.logic_x.axis_pixel_range(self.back_x)
    }

    pub fn get_y_axis_pixel_range(&self) -> Range<i32> {
        self.logic_y.axis_pixel_range(self.back_y)
    }
}

impl<X: Ranged, Y: Ranged> CoordTranslate for RangedCoord<X, Y> {
    type From = (X::ValueType, Y::ValueType);

    fn translate(&self, from: &Self::From) -> BackendCoord {
        (
            self.logic_x.map(&from.0, self.back_x),
            self.logic_y.map(&from.1, self.back_y),
        )
    }
}

impl<X: ReversableRanged, Y: ReversableRanged> ReverseCoordTranslate for RangedCoord<X, Y> {
    fn reverse_translate(&self, input: BackendCoord) -> Option<Self::From> {
        Some((
            self.logic_x.unmap(input.0, self.back_x)?,
            self.logic_y.unmap(input.1, self.back_y)?,
        ))
    }
}

/// Represent a coordinate mesh for the two ranged value coordinate system
pub enum MeshLine<'a, X: Ranged, Y: Ranged> {
    XMesh(BackendCoord, BackendCoord, &'a X::ValueType),
    YMesh(BackendCoord, BackendCoord, &'a Y::ValueType),
}

impl<'a, X: Ranged, Y: Ranged> MeshLine<'a, X, Y> {
    /// Draw a single mesh line onto the backend
    pub fn draw<DB: DrawingBackend>(
        &self,
        backend: &mut DB,
        style: &ShapeStyle,
    ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
        let (&left, &right) = match self {
            MeshLine::XMesh(a, b, _) => (a, b),
            MeshLine::YMesh(a, b, _) => (a, b),
        };
        backend.draw_line(left, right, &style.color)
    }
}

/// The trait indicates the coordinate is descrete, so that we can draw histogram on it
pub trait DescreteRanged
where
    Self: Ranged,
    Self::ValueType: Eq,
{
    /// Get the smallest value that is larger than the `this` value
    fn next_value(this: &Self::ValueType) -> Self::ValueType;

    /// Get the largest value that is smaller than `this` value
    fn previous_value(this: &Self::ValueType) -> Self::ValueType;
}

/// The trait for the type that can be converted into a ranged coordinate axis
pub trait AsRangedCoord: Sized {
    type CoordDescType: Ranged + From<Self>;
    type Value;
}

impl<T> AsRangedCoord for T
where
    T: Ranged,
    Range<T::ValueType>: Into<T>,
{
    type CoordDescType = T;
    type Value = T::ValueType;
}

pub struct CentricDescreteRange<D: DescreteRanged>(D)
where
    <D as Ranged>::ValueType: Eq;

pub trait IntoCentric: AsRangedCoord
where
    Self::CoordDescType: DescreteRanged,
    <Self::CoordDescType as Ranged>::ValueType: Eq,
{
    fn into_centric(self) -> CentricDescreteRange<Self::CoordDescType> {
        CentricDescreteRange(self.into())
    }
}

impl<T: AsRangedCoord> IntoCentric for T
where
    T::CoordDescType: DescreteRanged,
    <Self::CoordDescType as Ranged>::ValueType: Eq,
{
}

impl<D: DescreteRanged> Ranged for CentricDescreteRange<D>
where
    <D as Ranged>::ValueType: Eq,
{
    type ValueType = <D as Ranged>::ValueType;

    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32 {
        let prev = <D as DescreteRanged>::previous_value(&value);
        (self.0.map(&prev, limit) + self.0.map(value, limit)) / 2
    }

    fn key_points(&self, max_points: usize) -> Vec<Self::ValueType> {
        self.0.key_points(max_points)
    }

    fn range(&self) -> Range<Self::ValueType> {
        self.0.range()
    }
}

impl<D: DescreteRanged> DescreteRanged for CentricDescreteRange<D>
where
    <D as Ranged>::ValueType: Eq,
{
    fn next_value(this: &Self::ValueType) -> Self::ValueType {
        <D as DescreteRanged>::next_value(this)
    }

    fn previous_value(this: &Self::ValueType) -> Self::ValueType {
        <D as DescreteRanged>::previous_value(this)
    }
}

impl<D: DescreteRanged> AsRangedCoord for CentricDescreteRange<D>
where
    <D as Ranged>::ValueType: Eq,
{
    type CoordDescType = Self;
    type Value = <Self as Ranged>::ValueType;
}

pub struct PartialAxis<R: Ranged>(R, Range<R::ValueType>);

pub trait IntoPartialAxis: AsRangedCoord {
    fn partial_axis(
        self,
        axis_range: Range<<Self::CoordDescType as Ranged>::ValueType>,
    ) -> PartialAxis<Self::CoordDescType> {
        PartialAxis(self.into(), axis_range)
    }
}

impl<R: AsRangedCoord> IntoPartialAxis for R {}

impl<R: Ranged> Ranged for PartialAxis<R>
where
    R::ValueType: Clone,
{
    type ValueType = R::ValueType;

    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32 {
        self.0.map(value, limit)
    }

    fn key_points(&self, max_points: usize) -> Vec<Self::ValueType> {
        self.0.key_points(max_points)
    }

    fn range(&self) -> Range<Self::ValueType> {
        self.0.range()
    }

    fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> {
        let left = self.map(&self.1.start, limit);
        let right = self.map(&self.1.end, limit);

        left.min(right)..left.max(right)
    }
}

impl<R: DescreteRanged> DescreteRanged for PartialAxis<R>
where
    R: Ranged,
    <R as Ranged>::ValueType: Eq + Clone,
{
    fn next_value(this: &Self::ValueType) -> Self::ValueType {
        <R as DescreteRanged>::next_value(this)
    }

    fn previous_value(this: &Self::ValueType) -> Self::ValueType {
        <R as DescreteRanged>::previous_value(this)
    }
}

impl<R: Ranged> AsRangedCoord for PartialAxis<R>
where
    <R as Ranged>::ValueType: Clone,
{
    type CoordDescType = Self;
    type Value = <Self as Ranged>::ValueType;
}

#[cfg(feature = "make_partial_axis")]
pub fn make_partial_axis<T>(
    axis_range: Range<T>,
    part: Range<f64>,
) -> Option<PartialAxis<<Range<T> as AsRangedCoord>::CoordDescType>>
where
    Range<T>: AsRangedCoord,
    T: num_traits::NumCast + Clone,
{
    let left: f64 = num_traits::cast(axis_range.start.clone())?;
    let right: f64 = num_traits::cast(axis_range.end.clone())?;

    let full_range_size = (right - left) / (part.end - part.start);

    let full_left = left - full_range_size * part.start;
    let full_right = right + full_range_size * (1.0 - part.end);

    let full_range: Range<T> = num_traits::cast(full_left)?..num_traits::cast(full_right)?;

    let axis_range: <Range<T> as AsRangedCoord>::CoordDescType = axis_range.into();

    Some(PartialAxis(full_range.into(), axis_range.range()))
}