1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use super::CoordTranslate;
use crate::drawing::backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
use crate::style::ShapeStyle;

use std::ops::Range;

/// The trait that indicates we have a ordered and ranged value
/// Which is used to describe the axis
pub trait Ranged {
    /// The type of this value
    type ValueType;

    /// This function maps the value to i32, which is the drawing coordinate
    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32;

    /// This function gives the key points that we can draw a grid based on this
    fn key_points(&self, max_points: usize) -> Vec<Self::ValueType>;

    /// Get the range of this value
    fn range(&self) -> Range<Self::ValueType>;
}

/// The coordinate described by two ranged value
pub struct RangedCoord<X: Ranged, Y: Ranged> {
    logic_x: X,
    logic_y: Y,
    back_x: (i32, i32),
    back_y: (i32, i32),
}

impl<X: Ranged, Y: Ranged> RangedCoord<X, Y> {
    /// Create a new ranged value coordinate system
    pub fn new<IntoX: Into<X>, IntoY: Into<Y>>(
        logic_x: IntoX,
        logic_y: IntoY,
        actual: (Range<i32>, Range<i32>),
    ) -> Self {
        return Self {
            logic_x: logic_x.into(),
            logic_y: logic_y.into(),
            back_x: (actual.0.start, actual.0.end),
            back_y: (actual.1.start, actual.1.end),
        };
    }

    /// Draw the mesh for the coordinate system
    pub fn draw_mesh<E, DrawMesh: FnMut(MeshLine<X, Y>) -> Result<(), E>>(
        &self,
        h_limit: usize,
        v_limit: usize,
        mut draw_mesh: DrawMesh,
    ) -> Result<(), E> {
        let (xkp, ykp) = (
            self.logic_x.key_points(v_limit),
            self.logic_y.key_points(h_limit),
        );

        for logic_x in xkp {
            let x = self.logic_x.map(&logic_x, self.back_x);
            draw_mesh(MeshLine::XMesh(
                (x, self.back_y.0),
                (x, self.back_y.1),
                &logic_x,
            ))?;
        }

        for logic_y in ykp {
            let y = self.logic_y.map(&logic_y, self.back_y);
            draw_mesh(MeshLine::YMesh(
                (self.back_x.0, y),
                (self.back_x.1, y),
                &logic_y,
            ))?;
        }

        return Ok(());
    }

    /// Get the range of X axis
    pub fn get_x_range(&self) -> Range<X::ValueType> {
        return self.logic_x.range();
    }

    /// Get the range of Y axis
    pub fn get_y_range(&self) -> Range<Y::ValueType> {
        return self.logic_y.range();
    }
}

impl<X: Ranged, Y: Ranged> CoordTranslate for RangedCoord<X, Y> {
    type From = (X::ValueType, Y::ValueType);

    fn translate(&self, from: &Self::From) -> BackendCoord {
        return (
            self.logic_x.map(&from.0, self.back_x),
            self.logic_y.map(&from.1, self.back_y),
        );
    }
}

/// Represent a coordinate mesh for the two ranged value coordinate system
pub enum MeshLine<'a, X: Ranged, Y: Ranged> {
    XMesh(BackendCoord, BackendCoord, &'a X::ValueType),
    YMesh(BackendCoord, BackendCoord, &'a Y::ValueType),
}

impl<'a, X: Ranged, Y: Ranged> MeshLine<'a, X, Y> {
    /// Draw a single mesh line onto the backend
    pub fn draw<DB: DrawingBackend>(
        &self,
        backend: &mut DB,
        style: &ShapeStyle,
    ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
        let (&left, &right) = match self {
            MeshLine::XMesh(a, b, _) => (a, b),
            MeshLine::YMesh(a, b, _) => (a, b),
        };
        return backend.draw_line(left, right, &Box::new(style.color));
    }
}

/// The trait indicates the coordinate is descrete, so that we can draw histogram on it
pub trait DescreteRanged
where
    Self: Ranged,
    Self::ValueType: Eq,
{
    /// Get the smallest value that is larger than the `this` value
    fn next_value(this: &Self::ValueType) -> Self::ValueType;
}