1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*!

A module for managing axes

*/

#[derive(Debug)]
pub struct Axis {
    lower: f64,
    upper: f64,
    ticks: Vec<f64>,
}

impl Axis {
    /// Constructs a new Axis
    pub fn new(lower: f64, upper: f64) -> Axis {
        assert!(lower < upper);
        let default_max_ticks = 6;
        Axis {
            lower: lower,
            upper: upper,
            ticks: calculate_ticks(lower, upper, default_max_ticks),
        }
    }

    pub fn max(&self) -> f64 {
        self.upper
    }

    pub fn min(&self) -> f64 {
        self.lower
    }

    /// Get the positions of the ticks on the axis
    pub fn ticks(&self) -> &Vec<f64> {
        &self.ticks
    }
}

/// The base units for the step sizes
/// They should be within one order of magnitude, e.g. [1,10)
const BASE_STEPS: [u32; 4] = [1, 2, 4, 5];

#[derive(Debug,Clone)]
struct TickSteps {
    next: f64,
}

impl TickSteps {
    fn start_at(start: f64) -> TickSteps {
        let start_options = TickSteps::scaled_steps(start);
        let overflow = start_options[0] * 10.0;
        let curr = start_options.iter().skip_while(|&step| step < &start).next();

        TickSteps { next: *curr.unwrap_or(&overflow) }
    }

    fn scaled_steps(curr: f64) -> Vec<f64> {
        let power = curr.log10().floor();
        let base_step_scale = 10f64.powf(power);
        BASE_STEPS.iter().map(|&s| (s as f64 * base_step_scale)).collect()
    }
}

impl Iterator for TickSteps {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        let curr = self.next; // cache the value we're currently on
        let curr_steps = TickSteps::scaled_steps(self.next);
        let overflow = curr_steps[0] * 10.0;
        self.next = *curr_steps.iter().skip_while(|&s| s <= &curr).next().unwrap_or(&overflow);
        Some(curr)
    }
}

fn generate_ticks(min: f64, max: f64, step_size: f64) -> Vec<f64> {
    let mut ticks: Vec<f64> = vec![];
    if min <= 0.0 {
        if max >= 0.0 {
            // standard spanning axis
            ticks.extend((1..)
                .map(|n| -1.0 * n as f64 * step_size)
                .take_while(|&v| v >= min)
                .collect::<Vec<f64>>()
                .iter()
                .rev());
            ticks.push(0.0);
            ticks.extend((1..).map(|n| n as f64 * step_size).take_while(|&v| v <= max));
        } else {
            // entirely negative axis
            ticks.extend((1..)
                .map(|n| -1.0 * n as f64 * step_size)
                .skip_while(|&v| v > max)
                .take_while(|&v| v >= min)
                .collect::<Vec<f64>>()
                .iter()
                .rev());
        }
    } else {
        // entirely positive axis
        ticks.extend((1..)
            .map(|n| n as f64 * step_size)
            .skip_while(|&v| v < min)
            .take_while(|&v| v <= max));
    }
    ticks
}

/// Given a range and a step size, work out how many ticks will be displayed
fn number_of_ticks(min: f64, max: f64, step_size: f64) -> usize {
    generate_ticks(min, max, step_size).len()
}

/// Given a range of values, and a maximum number of ticks, calulate the step between the ticks
fn calculate_tick_step_for_range(min: f64, max: f64, max_ticks: usize) -> f64 {
    let range = max - min;
    let min_tick_step = range / max_ticks as f64;
    // Get the first entry which is our smallest possible tick step size
    let smallest_valid_step = TickSteps::start_at(min_tick_step)
        .skip_while(|&s| number_of_ticks(min, max, s) > max_ticks)
        .next()
        .expect("ERROR: We've somehow run out of tick step options!");
    // Count how many ticks that relates to
    let actual_num_ticks = number_of_ticks(min, max, smallest_valid_step);

    // Create a new TickStep iterator, starting at the correct lower bound
    let tick_steps = TickSteps::start_at(smallest_valid_step);
    // Get all the possible tick step sizes that give just as many ticks
    let step_options = tick_steps.take_while(|&s| number_of_ticks(min, max, s) == actual_num_ticks);
    // Get the largest tick step size from the list
    step_options.fold(-1. / 0., f64::max)
}

/// Given an axis range, calculate the sensible places to place the ticks
fn calculate_ticks(min: f64, max: f64, max_ticks: usize) -> Vec<f64> {
    let tick_step = calculate_tick_step_for_range(min, max, max_ticks);
    generate_ticks(min, max, tick_step)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_tick_step_generator() {
        let t = TickSteps::start_at(1.0);
        let ts: Vec<_> = t.take(7).collect();
        assert_eq!(ts, [1.0, 2.0, 4.0, 5.0, 10.0, 20.0, 40.0]);

        let t = TickSteps::start_at(100.0);
        let ts: Vec<_> = t.take(5).collect();
        assert_eq!(ts, [100.0, 200.0, 400.0, 500.0, 1000.0]);

        let t = TickSteps::start_at(3.0);
        let ts: Vec<_> = t.take(5).collect();
        assert_eq!(ts, [4.0, 5.0, 10.0, 20.0, 40.0]);

        let t = TickSteps::start_at(8.0);
        let ts: Vec<_> = t.take(3).collect();
        assert_eq!(ts, [10.0, 20.0, 40.0]);
    }

    #[test]
    fn test_number_of_ticks() {
        assert_eq!(number_of_ticks(-7.93, 15.58, 4.0), 5);
        assert_eq!(number_of_ticks(-7.93, 15.58, 5.0), 5);
        assert_eq!(number_of_ticks(0.0, 15.0, 4.0), 4);
        assert_eq!(number_of_ticks(0.0, 15.0, 5.0), 4);
        assert_eq!(number_of_ticks(5.0, 21.0, 4.0), 4);
        assert_eq!(number_of_ticks(5.0, 21.0, 5.0), 4);
        assert_eq!(number_of_ticks(-8.0, 15.58, 4.0), 6);
        assert_eq!(number_of_ticks(-8.0, 15.58, 5.0), 5);
    }

    #[test]
    fn test_calculate_tick_step_for_range() {
        assert_eq!(calculate_tick_step_for_range(0.0, 3.0, 6), 1.0);
        assert_eq!(calculate_tick_step_for_range(0.0, 6.0, 6), 2.0);
        assert_eq!(calculate_tick_step_for_range(0.0, 11.0, 6), 2.0);
        assert_eq!(calculate_tick_step_for_range(0.0, 14.0, 6), 4.0);
        assert_eq!(calculate_tick_step_for_range(0.0, 15.0, 6), 5.0);
        assert_eq!(calculate_tick_step_for_range(-1.0, 5.0, 6), 2.0);
        assert_eq!(calculate_tick_step_for_range(-7.93, 15.58, 6), 5.0);
        assert_eq!(calculate_tick_step_for_range(0.0, 0.06, 6), 0.02);
    }

    #[test]
    fn test_calculate_ticks() {

        macro_rules! assert_approx_eq {
            ($a:expr, $b:expr) => ({
                let (a, b) = (&$a, &$b);
                assert!((*a - *b).abs() < 1.0e-6,
                        "{} is not approximately equal to {}", *a, *b);
            })
        }

        for (prod, want) in calculate_ticks(0.0, 1.0, 6)
            .iter()
            .zip([0.0, 0.2, 0.4, 0.6, 0.8, 1.0].iter()) {
            assert_approx_eq!(prod, want);
        }
        for (prod, want) in calculate_ticks(0.0, 2.0, 6)
            .iter()
            .zip([0.0, 0.4, 0.8, 1.2, 1.6, 2.0].iter()) {
            assert_approx_eq!(prod, want);
        }
        assert_eq!(calculate_ticks(0.0, 3.0, 6), [0.0, 1.0, 2.0, 3.0]);
        assert_eq!(calculate_ticks(0.0, 4.0, 6), [0.0, 1.0, 2.0, 3.0, 4.0]);
        assert_eq!(calculate_ticks(0.0, 5.0, 6), [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]);
        assert_eq!(calculate_ticks(0.0, 6.0, 6), [0.0, 2.0, 4.0, 6.0]);
        assert_eq!(calculate_ticks(0.0, 7.0, 6), [0.0, 2.0, 4.0, 6.0]);
        assert_eq!(calculate_ticks(0.0, 8.0, 6), [0.0, 2.0, 4.0, 6.0, 8.0]);
        assert_eq!(calculate_ticks(0.0, 9.0, 6), [0.0, 2.0, 4.0, 6.0, 8.0]);
        assert_eq!(calculate_ticks(0.0, 10.0, 6),
                   [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
        assert_eq!(calculate_ticks(0.0, 11.0, 6),
                   [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
        assert_eq!(calculate_ticks(0.0, 12.0, 6), [0.0, 4.0, 8.0, 12.0]);
        assert_eq!(calculate_ticks(0.0, 13.0, 6), [0.0, 4.0, 8.0, 12.0]);
        assert_eq!(calculate_ticks(0.0, 14.0, 6), [0.0, 4.0, 8.0, 12.0]);
        assert_eq!(calculate_ticks(0.0, 15.0, 6), [0.0, 5.0, 10.0, 15.0]);
        assert_eq!(calculate_ticks(0.0, 16.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]);
        assert_eq!(calculate_ticks(0.0, 17.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]);
        assert_eq!(calculate_ticks(0.0, 18.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]);
        assert_eq!(calculate_ticks(0.0, 19.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]);
        assert_eq!(calculate_ticks(0.0, 20.0, 6),
                   [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]);
        assert_eq!(calculate_ticks(0.0, 21.0, 6),
                   [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]);
        assert_eq!(calculate_ticks(0.0, 22.0, 6),
                   [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]);
        assert_eq!(calculate_ticks(0.0, 23.0, 6),
                   [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]);
        assert_eq!(calculate_ticks(0.0, 24.0, 6), [0.0, 5.0, 10.0, 15.0, 20.0]);
        assert_eq!(calculate_ticks(0.0, 25.0, 6),
                   [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]);
        assert_eq!(calculate_ticks(0.0, 26.0, 6),
                   [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]);
        assert_eq!(calculate_ticks(0.0, 27.0, 6),
                   [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]);
        assert_eq!(calculate_ticks(0.0, 28.0, 6),
                   [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]);
        assert_eq!(calculate_ticks(0.0, 29.0, 6),
                   [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]);
        assert_eq!(calculate_ticks(0.0, 30.0, 6), [0.0, 10.0, 20.0, 30.0]);
        assert_eq!(calculate_ticks(0.0, 31.0, 6), [0.0, 10.0, 20.0, 30.0]);
        //...
        assert_eq!(calculate_ticks(0.0, 40.0, 6), [0.0, 10.0, 20.0, 30.0, 40.0]);
        assert_eq!(calculate_ticks(0.0, 50.0, 6),
                   [0.0, 10.0, 20.0, 30.0, 40.0, 50.0]);
        assert_eq!(calculate_ticks(0.0, 60.0, 6), [0.0, 20.0, 40.0, 60.0]);
        assert_eq!(calculate_ticks(0.0, 70.0, 6), [0.0, 20.0, 40.0, 60.0]);
        assert_eq!(calculate_ticks(0.0, 80.0, 6), [0.0, 20.0, 40.0, 60.0, 80.0]);
        assert_eq!(calculate_ticks(0.0, 90.0, 6), [0.0, 20.0, 40.0, 60.0, 80.0]);
        assert_eq!(calculate_ticks(0.0, 100.0, 6),
                   [0.0, 20.0, 40.0, 60.0, 80.0, 100.0]);
        assert_eq!(calculate_ticks(0.0, 110.0, 6),
                   [0.0, 20.0, 40.0, 60.0, 80.0, 100.0]);
        assert_eq!(calculate_ticks(0.0, 120.0, 6), [0.0, 40.0, 80.0, 120.0]);
        assert_eq!(calculate_ticks(0.0, 130.0, 6), [0.0, 40.0, 80.0, 120.0]);
        assert_eq!(calculate_ticks(0.0, 140.0, 6), [0.0, 40.0, 80.0, 120.0]);
        assert_eq!(calculate_ticks(0.0, 150.0, 6), [0.0, 50.0, 100.0, 150.0]);
        //...
        assert_eq!(calculate_ticks(0.0, 3475.0, 6),
                   [0.0, 1000.0, 2000.0, 3000.0]);

        assert_eq!(calculate_ticks(-10.0, -3.0, 6), [-10.0, -8.0, -6.0, -4.0]);
    }
}