
D
RA
FT

Plonky2:
Fast Recursive Arguments with PLONK and FRI

Polygon Zero Team

DRAFT
September 7, 2022

Abstract

We describe Plonky2, an implementation of cryptographic arguments
with an emphasis on fast recursive composition. On a commodity laptop,
Plonky2 takes about 300 milliseconds to generate a recursive proof.

Plonky2’s arithmetization is based on TurboPLONK, but it replaces
PLONK’s polynomial testing scheme with a different one based on FRI.
Since FRI does not require a large-characteristic field, we encode the wit-
ness in a 64-bit field, which greatly improves prover performance.

We also demonstrate how recursion can be used to shrink arbitrarily
large proofs to a constant size. Plonky2 can shrink any proof to about 43
kilobytes, depending on desired security and latency.

1

D
RA
FT

Contents

1 Introduction 3

2 Field selection 3
2.1 Extension field . 4

3 PLONK modifications 4
3.1 Custom gates . 4

3.1.1 Filtering constraints . 5
3.2 Advice wires . 5
3.3 Cumulative products . 6
3.4 Soundness analysis . 7

3.4.1 Permutation argument . 7
3.4.2 Combining constraints . 7
3.4.3 Boosting soundness . 8

3.5 Public inputs . 8
3.6 Zero-knowledge . 8

4 Hashing 9
4.1 Hashing in the circuit . 9

5 Polynomial testing 10

6 Optimizations 10
6.1 Structure of the trace . 10
6.2 FRI optimizations . 11
6.3 Poseidon . 11

7 Final protocol 12
7.1 Preprocessing . 12
7.2 Main protocol . 12
7.3 FRI protocol . 13

8 Evaluation 14

2

D
RA
FT

1 Introduction

While the idea of proof composition dates back to the PCP literature [1], achieving
practical recursion has been a major challenge. Recursive composition was first
realized in practice using cycles of elliptic curves [2]. While this was an important
milestone, its use of large MNT curves limited its practicality.

More recently, Halo [3] demonstrated how recursion can be realized without
pairings, enabling much smaller elliptic curves to be used. Subsequent works like
Nova [4] build upon Halo’s accumulation strategy, reduce certain incremental ver-
ification costs.

One challenge with schemes like Halo is that, while most of the work to verify
a proof involves that proof’s base field, constraint evaluation must be done in its
scalar field. Since that is not the native field of the verification circuit, these checks
are typically deferred to the next proof in a recursion chain. However, this deferral
strategy relies on public inputs, and verifying public inputs itself requires some use
of non-native arithmetic.

To avoid the difficulties associated with elliptic curve cycles, we turn to FRI
[5], which supports any prime field with smooth subgroups. While Fractal [6]
previously demonstrated FRI-based recursion, its recursion threshold was 221 R1CS
constraints, resulting in proof times on the order of minutes.

We achieve a smaller recursion threshold of 212 gates using a PLONK [7] based
arithmetization, with custom gates tailored to the verifier’s bottlenecks. We also
use a smaller field which results in much faster proving times.

2 Field selection

We encode witness data in a prime field Fp, with p = 264 − 232 + 1. This field was
chosen for speed of computation: its elements fit within a 64-bit word, and the
structure of of p gives rise to an efficient reduction method.

To see why reduction modulo p is uniquely efficient, observe that

264 ≡ 232 − 1 (mod p),

and consequently

296 ≡ 232
(
232 − 1

)
(mod p)

≡ 264 − 232 (mod p)

≡ −1 (mod p).

To reduce a 128-bit number n, we first rewrite n as n0 + 264n1 + 296n2, where n0

3

D
RA
FT

is 64 bits and n1, n2 are 32 bits each. Then

n ≡ n0 + 264n1 + 296n2 (mod p)

≡ n0 + (232 − 1)n1 − n2 (mod p).

To perform this in computer arithmetic, we first compute (232 − 1)n1, which
may be done with a bitshift and subtraction. We add the first two terms modulo
264, subtracting p if overflow occurs.1 We then subtract n2 modulo 264, adding p
if underflow occurs.2 At this point we have reduced n to a 64-bit integer. This
partial reduction is adequate for most purposes, and the canonical form can be
obtained by a final conditional subtraction.

Our choice of p also reduces the need to keep constants in the registers. In
particular, an overflowing addition requires us to subtract p as a correction. Sub-
tracting p is equivalent to adding 264 − p = 232 − 1 in 64-bit arithmetic. Con-
veniently, many architectures have an instruction to set a register to either 0 or
232 − 1 depending on the carry flag; for example, x86 has SBB and ARM64 has
CSETM. Therefore, even though p appears as a constant in the reduction algorithm,
it does not need to be kept in a register; this reduces register pressure and the
overhead of loading constants.

2.1 Extension field

In certain parts of our protocol, a larger field is required for soundness. Following
[8], we use an extension field Fp(φ) in those cases, specifically Fp[X]/(X2 − 7).

3 PLONK modifications

3.1 Custom gates

Following prior work like TurboPLONK [9], Plonky2 makes extensive use of custom
gates. To illustrate the model, suppose we were designing a gate for (field) division,
q = x/y, or equivalently, (qy = x) ∧ (y 6= 0). To enforce y 6= 0, we ask the prover
to supply a purported inverse, i = 1/y. We then enforce the constraints

qy = x,

yi = 1.

More concretely, we would map these variables to wire polynomials. If we pick
w1(x), . . . , w4(x) for x, y, q and i respectively, then after rearranging, our con-

1Such subtraction must underflow, thus cancelling the error.
2Similarly, such addition must overflow.

4

D
RA
FT

straints become

w3(x)w2(x)− w1(x) = 0,

w2(x)w4(x)− 1 = 0.

Note that these constraints should be enforced only on rows of our trace which
correspond to division gates. A simple solution is to preprocess a polynomial d(x),
defined by

d(gi) =

{
1 if the ith gate is a division gate,

0 otherwise,

and use d(x) to “filter” our division constraints, giving

d(x)(w3(x)w2(x)− w1(x)) = 0,

d(x)(w2(x)w4(x)− 1) = 0.

3.1.1 Filtering constraints

If we have k custom gates, introducing k of these filter polynomials would substan-
tially increase the cost of our opening protocol. We can achieve the same effect with
fewer polynomials if we batch multiple filter polynomials together. This technique
is inspired by [10].

To illustrate this technique, suppose our circuit uses n custom gates and fix a
canonical order. Let f(x) be the polynomial defined by the following evaluation
on 〈g〉

f(gi) = j if the jth gate is used in the ith row.

Then, the jth gate’s constraints can be filtered with the expression

fj(x) =
n−1∏
k=0
k 6=j

(f(x)− k) ,

which is non-zero on gi if and only if the jth gate is used in the ith row.
Note that fj(x) has degree n − 1, so filtering by this polynomial can render

some gates degree unacceptably large. This can easily be solved by partitioning
the gates into different subsets, and defining different filter polynomials for each
of these subsets.

3.2 Advice wires

Certain trace elements do not need to be wired to any other trace elements. For
example, it is common to implement division nondeterministically, by allocating a

5

D
RA
FT

column for a purported inverse. We refer to these as advice wires, and we exclude
them from PLONK’s permutation argument.

This reduces the number of σi polynomials in our protocol, which reduces the
degree of the permutation argument. Since there are fewer polynomials to open,
it also reduces proof sizes and saves the verifier some work.

3.3 Cumulative products

Suppose our circuit has r routed wires. PLONK’s permutation argument imposes
the following degree r + 1 constraint:

Z(x)
r∏
i=1

f ′i(x) = Z(gx)
r∏
i=1

g′i(x).

In our case, r is large, and such a high-degree constraint would be undesirable.
We can rewrite the above as

Z(gx) = Z(x)
r∏
i=1

f ′i(x)/g′i(x).

To obtain lower-degree constraints, we will split the product above into chunks of
8 terms, and introduce a prover polynomial πi(x) to hold each cumulative product.
Let s = br/8c; then we have

π1(x) = Z(x)
8∏
i=1

f ′i(x)/g′i(x)

π2(x) = π1(x)
16∏
i=9

f ′i(x)/g′i(x)

...

Z(gx) = πs(x)
r∏

i=8s+1

f ′i(x)/g′i(x).

These equations are suitable for deriving the values of πi(x) and Z(gx) at each x ∈
H, but they cannot directly be used as polynomial constraints, since they contain
rational functions which are not necessarily polynomials. To obtain polynomial
constraints, we multiply by each g′i(x) term, giving constraints like

π1(x)
8∏
i=1

g′i(x) = Z(x)
8∏
i=1

f ′i(x),

and so on for the other cumulative products.

6

D
RA
FT

3.4 Soundness analysis

The PLONK paper [7] assumes a large field, so any soundness errors inversely
proportional to the field size are treated as negligible. Since our field size is much
smaller than our security target, we must do a more detailed analysis, and modify
parts of the protocol to boost soundness.

3.4.1 Permutation argument

We begin with a direct analysis of PLONK’s permutation argument. Suppose that
g 6= σ(f); hence there exists some j such that g(gj) 6= f(gσ(j)). We would like to
bound the probability that, for random β, γ ∈ F2

p,∏
i∈[n]

(f(gi) + βi+ γ) =
∏
i∈[n]

(g(gi) + βσ(i) + γ).

We can treat both sides as factored polynomials with variables β and γ. Consider
the factor of the left hand polynomial corresponding to i = σ(j), namely

f(gσ(j)) + βσ(j) + γ.

If the right hand polynomial contained the same factor, it must also have σ(j) as
the coefficient of β, so it must be the factor associated with i = j, namely

g(gj) + βσ(j) + γ.

But since g(gj) 6= f(gσ(j)), these factors are not in fact equal, so the polynomials
are not equal. Since their total degree is n, the Schwartz-Zippel lemma implies
that our constraint holds with probability at most n/|Fp|.

3.4.2 Combining constraints

Like many IOPs, PLONK combines a set of constraints, c0, . . . , cl−1, into a single
constraint using randomness. In particular, the verifier selects a random α ∈ Fp,
and the combined constraint is

C(x) =
l−1∑
i=0

αici(x).

Suppose some constraint is not satisfied: cj(g
k) 6= 0 for some j, k. We would like

to show that with high probability, C(gk) 6= 0. Consider the polynomial

p(α) =
l−1∑
i=0

αici(g
k)

Since the coefficient of p(α) associated with αj is nonzero, p(α) is not the zero
polynomial, so it has at most l roots by the Schwartz-Zippel lemma. Thus, C(gk) 6=
0 except with probability at most l/|Fp| over α.

7

D
RA
FT

3.4.3 Boosting soundness

The soundness errors mentioned above are too large for practical use. To boost
a subprotocol’s soundness, we simply repeat it r times in parallel. By the tight
parallel repetition theorem, this results in a soundness error of εr, where ε is the
soundness error of the original subprotocol.3

For example, repeating the permutation argument three times gives a soundness
error of (n/|Fp|)3. This is less than 2−128 for any n ≤ 221.

3.5 Public inputs

In Plonky2, any routable4 trace element can be marked as public. The circuit itself
hashes these public elements, and routes the hash output h = (h1, . . . , h4)

5 to a
PublicInputGate. This PublicInputGate simply imposes the constraints

w1(x) = h1,

w2(x) = h2,

w3(x) = h3,

w4(x) = h4.

By contrast, the constraint system in the original PLONK protocol involved PI(x),
a polynomial obtained by interpolating l public input values. Since hashing lets
us “compress” l to four, we can encode public input data as four constants in
our constraint system, rather than defining polynomials to encode an arbitrary
quantity of public input data.

3.6 Zero-knowledge

PLONK achieves zero-knowledge by adding random multiples of ZH(x) to trace
polynomials, as well as to the permutation polynomial Z(x). This increases the
degree of these polynomials just beyond a power of two, which is undesirable in
our setting, as both the FFT and FRI algorithms deal with polynomials defined
over smooth multiplicative subgroups.

Instead, we blind prover polynomials before padding to a power of two. To blind
trace polynomials, we add rows filled with random elements to the trace. To blind
Z(x), we add pairs of randomized rows to the trace, with copy constraints between

3Note that this claim only pertains to standard (interactive) soundness. To show that this
soundness carries over after applying the Fiat-Shamir transform, we would need to analyze the
state-restoration soundness of our protocol, which the present work does not do.

4See Section 3.2 regarding routability.
5This assumes a standard configuration, where hash outputs are comprised of four field ele-

ments, offering approximately 128 bits of collision resistance.

8

D
RA
FT

each pair of columns. We refer to [11] for more details and a proof of statistical
zero-knowledge. Note that more blinding factors must be adjusted when using
PLONK with FRI instead of a PCS.6

We then use standard techniques to make the FRI protocol zero-knowledge:

1. Since sending evaluations of prover polynomials on H would directly reveal
witness information, we instead send evaluations on a coset of H.

2. As suggested in [12], we transform Merkle trees into hiding vector commit-
ments by wrapping each leaf in a hash-based commitment.

4 Hashing

In most FRI-based proof implementations, hashing is the main bottleneck for both
the prover and the verifier. Since the cost to generate a recursive proof is a function
of both proving costs and verification costs, the efficiency of FRI-based recursion
is highly dependent on our choice of hash function.

To this end, we decided to use Poseidonπ [13] in a sponge. We use a width of
12 Fp elements, and x7 as the S-box. For 128 bit security with the recommended
security margin, we use 8 full rounds and 22 partial rounds, for a total of 118
S-boxes.

Plonky2 also supports GMiMCerf [14] as an option, but although it is more
efficient, we avoid using it in practice due to security concerns.

4.1 Hashing in the circuit

In Plonky2, about 75% of the recursive circuit is devoted to verifying Merkle
proofs. Thus to obtain a small recursive circuit, it is critical to arithmetize hashes
efficiently.

In most other SNARK implementations, a single evaluation of an arithmetic
hash takes place over several rows of the trace. For example, an arithmetization of
Rescue might use one row per round of the cipher. Round constants may be passed
in using preprocessed polynomials, or other techniques like periodic columns [8].
Note that both options have some drawbacks—more preprocessed polynomials
means more openings, and periodic columns impose alignment requirements on
the placement of rows.

By contrast, Plonky2 uses a single PoseidonGate to evaluate an entire instance
of Poseidonπ. This allows us to specify round constants in the constraint system
itself. To keep our constraints low-degree, we introduce “intermediate value” wires
for each S-box input, resulting in constraints of degree 7.

6FRI lacks the zero-knowledge property of a PCS opening, TODO.

9

D
RA
FT

This design does result in somewhat wide traces; Plonky2 uses 135 columns.
There are tradeoffs between narrower, longer traces and wider, shorter traces, but
we find this width to be a reasonable balance for minimizing both proof sizes and
FRI verification costs.

5 Polynomial testing

A low-degree test such as FRI may be used to construct a polynomial commitment
scheme. To commit to a polynomial p(x), the prover simply sends a vector com-
mitment to a low-degree extension of p(x). To open p(x0) = y0, the FRI protocol
is run on (p(x)− y0)/(x− x0), which is a polynomial if and only if p(x0) = y0.

However, this construction assumes that FRI is used with a δ parameter within
the decoding radius, (1− ρ)/2. For efficient recursion, we would like a larger δ, in
which case the prover is not bound to a single polynomial. Still, after sending a
vector commitment to u ∈ Fnp , the prover is bound to the set of polynomials in the
Hamming ball of radius δ centered around u.

We can then argue that if no polynomial satisfies our constraints, it is unlikely
that any polynomial in this Hamming ball satisfies the check at a random ζ. We
refer to the DEEP-ALI protocol [15] for a soundness analysis. While the original
DEEP-ALI analysis assumed a single witness polynomial, this was later generalized
in [16] and [17].

6 Optimizations

6.1 Structure of the trace

It is natural to think of a trace as a matrix, Fr×c, where each row corresponds to
the wires of one gate. However, PLONK’s copy constraints imply that certain trace
elements will always have the same value. These constraints induce a partition of
trace elements, where two elements reside in the same set if and only if there is a
path between them in the wiring graph.

With this in mind, another natural structure to consider is a disjoint-set forest.
When building a circuit, we begin with a singleton set for each trace element.
When a copy constraint is added between two elements, we perform a union.

Later, when generating the trace values, we store one value per representative
rather than one for each trace cell. This has the benefit that when a value is
populated, there is no need for it to be copied to neighboring cells in the wiring
graph.

10

D
RA
FT

6.2 FRI optimizations

While these techniques are not novel, we apply several optimizations to the FRI
protocol:

1. We use the minimal number of Merkle trees needed to carry out the protocol.
For example, we combine all preprocessed polynomials, such as PLONK’s σi
and selector polynomials, into a single Merkle tree.

2. When optimizing for proof size, we perform an exhaustive search for the
sequence of FRI reduction arities that minimizes proof sizes. This sometimes
results in higher arities in earlier FRI rounds, followed by lower arities in later
rounds. When optimizing for recursion costs, we used a fixed arity of 8 to
make the verifier’s work more uniform.

3. Wherever a contiguous block of oracle data would be queried together, we
place the entire block in a leaf of the Merkle tree. In Merkle trees from the
FRI commit phase, for example, a leaf consists of evaluations over an entire
coset rather than a single point.

4. As a size optimization, we prune overlapping Merkle paths. When the same
query index occurs twice in the same FRI layer, we omit the response alto-
gether.

5. In the recursive setting, we would not want the variable-length Merkle paths
that pruning would create. Instead, we have the prover send “Merkle caps”
[18] in place of Merkle roots. This lets us prune a few hashes from each
Merkle path, while still keeping path lengths fixed.

6. In the original description of FRI, reductions are performed until the reduced
codeword has degree 1. In practice, we terminate the reduction protocol once
we reach some reasonably small degree, and the prover sends this reduced
polynomial rather than a constant.

7. Following [8], we use grinding to boost security.

6.3 Poseidon

In the MDS layer, we use the circulant MDS matrix whose first row is given
by [1, 1, 2, 1, 8, 32, 2, 256, 4096, 8, 65536, 1024]. This choice of MDS matrix enables
numerous optimizations. Firstly, the MDS matrix is composed of powers of two.
This permits implementations to eschew multiplication for bitshifts, which are
faster on most hardware. Additionally, the entries of the matrix are relatively low.
Integer matrix multiplication, performed with inputs in 0, ..., 264 − 1,7 will always

7The inputs are not necessarily in canonical form.

11

D
RA
FT

yield vector entries smaller than 281. This bound simplifies the final reduction.
In addition to these two properties, our x86-64 and ARM64 implementations

accelerate hashing by making heavy use of SIMD operations and hand-tuned as-
sembly. The circulant property simplifies SIMD implementations—by appropri-
ately permuting the input vector at each step, we can ensure that all entries are
multiplied by the same constant. This enables us to use instructions that multiply
all elements of a vector by a scalar or by an immediate, reducing register pressure.

7 Final protocol

Here we describe the interactive variant of the Plonky2 protocol. The non-interactive
variant is obtained by applying the Fiat-Shamir transform.

Let r be our repetition parameter. This is the number of times we repeat
certain checks, particularly those with soundness error y/|Fp|, where y is some
“small” quantity such as our circuit degree or constraint count.

We use Com(~p) to denote a commitment to a vector of polynomials. Concretely,
it represents the cap of a Merkle tree, where each leaf corresponds to a single point
x ∈ H, and contains the evaluations p1(x), . . . , pk(x).

7.1 Preprocessing

1. P, V construct the circuit and compute ~C, a set of polynomials which en-
code the constants configured for each gate, as well as ~σ, which encode the
“extended” permutation described in [7].

2. P, V construct a Merkle tree containing ~C, ~σ.

3. P stores this Merkle tree as its proving key.

4. V stores Com(~C, ~σ) as its verification key.

7.2 Main protocol

1. P generates a witness ~w and sends Com(~w), a commitment to each wire
polynomial w(x).

2. V samples β1, . . . , βr, γ1, . . . , γr ∈ Fp, the randomness used in our permuta-
tion argument.

3. P sends Com(~Z, ~π), a commitment to each permutation polynomial Z(x)
and partial product polynomial π(x).

4. V samples α1, . . . , αr ∈ Fp, the randomness used to combine constraints.

12

D
RA
FT

5. P sends Com(~q), a commitment to each quotient polynomial q(x). In par-
ticular,

qi(x) = Ci(x)/ZH(x),

where Ci(x) is a combined constraint (see Section 3.4.2), which has been
reduced using powers of αi, and ZH(x) = xn − 1 is the polynomial which
vanishes on H.

6. V samples ζ ∈ Fp(φ), the random point at which our polynomial identities
are to be tested.

7. P sends ~P (ζ), the purported evaluation of each polynomial at ζ, where ~P is

the concatenation of all aforementioned polynomials: ~P = (~C, ~σ, ~w, ~Z, ~π, ~q).

8. To verify these openings, P, V engage in a batch FRI protocol on the fol-
lowing list of purported codewords:

~B =

(
pi(x)− pi(ζ)

x− ζ

∣∣∣∣ pi ∈ ~P

)
.

9. V uses ~P (ζ) to infer the evaluation of our combined constraint polynomials,
c1(ζ), . . . , cr(ζ), and asserts that each ci(ζ) = qi(x)ZH(x).

7.3 FRI protocol

Our FRI protocol is almost identical to the one described in [15], with minor
differences such as our use of Merkle caps in place of Merkle roots.

1. V samples α ∈ Fp(φ), the randomness used to reduce the batch Bs into a
single purported codeword.

2. P sends Com(h0), where h0(x) is the DEEP composition polynomial,

h0(x) =

| ~B|−1∑
i=0

αi ~Bi(x).

3. P, V carry out FRI’s commit phase. For each reduction arity li,

(a) V samples β ∈ Fp(φ).

(b) P rewrites hi(x) as

hi(x) =

li−1∑
j=0

xjhi,j(x
li),

13

D
RA
FT

where each hi,j contains the coefficients of hi(x) whose exponents are
congruent to j mod li. P then sends Com(hi+1), a commitment to the
polynomial

hi+1(x) =

li−1∑
j=0

βjhi,j(x).

4. V samples τ ∈ F4
p.

5. P performs “grinding” [15] and sends their proof-of-work witness µ.

6. V asserts that H(τ, µ) contains at least proof of work bits leading zeros
in its binary encoding.

7. V samples num query rounds random indices, q1, . . . , qk ∈ {0, . . . , n− 1}.

8. For each query index qi,

(a) P sends the evaluations ~P (x) along with each hi(x), where x is the ith
point in the coset over which codewords are defined.

(b) V performs a series of consistency checks at x, first between ~P (x) and
h0(x), and then between each (hi(x), hi+1(x)) pair. We refer to [8] for
details.

8 Evaluation

Plonky2’s recursion threshold depends on various settings. When optimizing for
prover speed, we typically use a codeword rate of 1/8. Then, when configured
for 100 bits of conjectured8 security, Plonky2 has a threshold of 212 gates. These
recursive proofs take approximately 300ms to generate on a 2021 Macbook Air.

When optimizing for size, we use larger codeword rates. Using a rate of 1/256,
Plonky2 is able to compress any proof to approximately9 43 kilobytes. These proofs
take approximately 11.6 seconds to generate, again on a 2021 Macbook Air.

References

[1] S. Arora and S. Safra, “Probabilistic checking of proofs: A new characteriza-
tion of NP,” Journal of the ACM (JACM), vol. 45, no. 1, pp. 70–122, 1998.

8This is based on the soundness conjecture in [8].
9The exact size depends on the verifier’s random tape, since the path-pruning optimization

results in different compression ratios for different query index sets.

14

D
RA
FT

[2] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero knowledge
via cycles of elliptic curves.” Cryptology ePrint Archive, Report 2014/595,
2014. https://ia.cr/2014/595.

[3] S. Bowe, J. Grigg, and D. Hopwood, “Recursive proof composition without a
trusted setup.” Cryptology ePrint Archive, Report 2019/1021, 2019. https:

//ia.cr/2019/1021.

[4] A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive zero-knowledge ar-
guments from folding schemes.” Cryptology ePrint Archive, Report 2021/370,
2021. https://ia.cr/2021/370.

[5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast Reed-Solomon
Interactive Oracle Proofs of Proximity,” in 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018), vol. 107 of Leib-
niz International Proceedings in Informatics (LIPIcs), pp. 14:1–14:17, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[6] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and transpar-
ent recursive proofs from holography.” Cryptology ePrint Archive, Report
2019/1076, 2019. https://ia.cr/2019/1076.

[7] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permutations
over Lagrange-bases for oecumenical noninteractive arguments of knowledge.”
Cryptology ePrint Archive, Report 2019/953, 2019. https://ia.cr/2019/

953.

[8] StarkWare, “ethSTARK documentation.” Cryptology ePrint Archive, Report
2021/582, 2021. https://ia.cr/2021/582.

[9] A. Gabizon and Z. J. Williamson, “Proposal: The Turbo-PLONK program
syntax for specifying SNARK programs,” 2020. https://docs.zkproof.org/
pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf.

[10] D. Hopwood, “Selector combining,” 2022. https://hackmd.io/@daira/

SkjDVkLCd.

[11] D. Lubarov, “Adding zero knowledge to PLONK-Halo,” 2020. https:

//mirprotocol.org/blog/Adding-zero-knowledge-to-Plonk-Halo.

[12] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs.” Cryp-
tology ePrint Archive, Report 2016/116, 2016. https://ia.cr/2016/116.

[13] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger, “Po-
seidon: A new hash function for zero-knowledge proof systems.” Cryptology
ePrint Archive, Report 2019/458, 2019. https://ia.cr/2019/458.

15

https://ia.cr/2014/595
https://ia.cr/2019/1021
https://ia.cr/2019/1021
https://ia.cr/2021/370
https://ia.cr/2019/1076
https://ia.cr/2019/953
https://ia.cr/2019/953
https://ia.cr/2021/582
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://hackmd.io/@daira/SkjDVkLCd
https://hackmd.io/@daira/SkjDVkLCd
https://mirprotocol.org/blog/Adding-zero-knowledge-to-Plonk-Halo
https://mirprotocol.org/blog/Adding-zero-knowledge-to-Plonk-Halo
https://ia.cr/2016/116
https://ia.cr/2019/458

D
RA
FT

[14] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,
A. Roy, and M. Schofnegger, “Feistel structures for MPC, and more.” Cryp-
tology ePrint Archive, Report 2019/397, 2019. https://ia.cr/2019/397.

[15] E. Ben-Sasson, L. Goldberg, S. Kopparty, and S. Saraf, “DEEP-FRI: Sam-
pling outside the box improves soundness.” Cryptology ePrint Archive, Report
2019/336, 2019. https://ia.cr/2019/336.

[16] A. Kattis, K. Panarin, and A. Vlasov, “RedShift: Transparent SNARKs
from list polynomial commitment IOPs.” Cryptology ePrint Archive, Report
2019/1400, 2019. https://ia.cr/2019/1400.

[17] E. Ben-Sasson, D. Carmon, Y. Ishai, S. Kopparty, and S. Saraf, “Proximity
gaps for Reed-Solomon codes.” Cryptology ePrint Archive, Report 2020/654,
2020. https://ia.cr/2020/654.

[18] A. Chiesa and E. Yogev, “Subquadratic SNARGs in the random oracle
model.” Cryptology ePrint Archive, Report 2021/281, 2021. https://ia.

cr/2021/281.

16

https://ia.cr/2019/397
https://ia.cr/2019/336
https://ia.cr/2019/1400
https://ia.cr/2020/654
https://ia.cr/2021/281
https://ia.cr/2021/281

	Introduction
	Field selection
	Extension field

	PLONK modifications
	Custom gates
	Filtering constraints

	Advice wires
	Cumulative products
	Soundness analysis
	Permutation argument
	Combining constraints
	Boosting soundness

	Public inputs
	Zero-knowledge

	Hashing
	Hashing in the circuit

	Polynomial testing
	Optimizations
	Structure of the trace
	FRI optimizations
	Poseidon

	Final protocol
	Preprocessing
	Main protocol
	FRI protocol

	Evaluation

