1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! A generic event loop for games and interactive applications

#![deny(missing_docs)]
#![deny(missing_copy_implementations)]

extern crate window;
extern crate input;
extern crate viewport;
extern crate time;

use std::thread::sleep;
use std::time::Duration;
use std::cmp;
use window::Window;
use input::{ AfterRenderArgs, Event, IdleArgs, RenderArgs, UpdateArgs };

/// A trait for create event iterator from window.
pub trait Events {
    /// Creates event iterator from window.
    fn events(&self) -> WindowEvents;
}

impl<W> Events for W where W: Window {
    fn events(&self) -> WindowEvents {
        WindowEvents::new()
    }
}

/// Tells whether last emitted event was idle or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Idle {
    No,
    Yes
}

// Stores the update state right after sleep.
// This is used to avoid logic error when changing settings
// in the event loop followed by an update.
#[derive(Copy, Clone, Debug)]
struct UpdateState {
    dt_update_in_ns: u64,
    dt: f64,
}

#[derive(Copy, Clone, Debug)]
enum State {
    Render,
    SwapBuffers,
    UpdateLoop(Idle),
    HandleEvents(UpdateState),
    Update(UpdateState),
}

/// Methods implements for event loop settings.
pub trait EventLoop: Sized {
    /// The number of updates per second
    ///
    /// This is the fixed update rate on average over time.
    /// If the event loop lags, it will try to catch up.
    fn set_ups(&mut self, frames: u64);

    /// The number of updates per second
    ///
    /// This is the fixed update rate on average over time.
    /// If the event loop lags, it will try to catch up.
    fn ups(mut self, frames: u64) -> Self {
        self.set_ups(frames);
        self
    }

    /// The maximum number of frames per second
    ///
    /// The frame rate can be lower because the
    /// next frame is always scheduled from the previous frame.
    /// This causes the frames to "slip" over time.
    fn set_max_fps(&mut self, frames: u64);

    /// The maximum number of frames per second
    ///
    /// The frame rate can be lower because the
    /// next frame is always scheduled from the previous frame.
    /// This causes the frames to "slip" over time.
    fn max_fps(mut self, frames: u64) -> Self {
        self.set_max_fps(frames);
        self
    }

    /// Enable or disable automatic swapping of buffers.
    fn set_swap_buffers(&mut self, enable: bool);

    /// Enable or disable automatic swapping of buffers.
    fn swap_buffers(mut self, enable: bool) -> Self {
        self.set_swap_buffers(enable);
        self
    }

    /// Enable or disable benchmark mode.
    /// When enabled, it will render and update without sleep and ignore input.
    /// Used to test performance by playing through as fast as possible.
    fn set_bench_mode(&mut self, enable: bool);

    /// Enable or disable benchmark mode.
    /// When enabled, it will render and update without sleep and ignore input.
    /// Used to test performance by playing through as fast as possible.
    fn bench_mode(mut self, enable: bool) -> Self {
        self.set_bench_mode(enable);
        self
    }
}

/// An event loop iterator
///
/// *Warning: Because the iterator polls events from the window back-end,
/// it must be used on the same thread as the window back-end (usually main thread),
/// unless the window back-end supports multi-thread event polling.*
#[derive(Copy, Clone)]
pub struct WindowEvents {
    state: State,
    last_update: u64,
    last_frame: u64,
    dt_update_in_ns: u64,
    dt_frame_in_ns: u64,
    dt: f64,
    swap_buffers: bool,
    bench_mode: bool,
}

static BILLION: u64 = 1_000_000_000;

fn ns_to_duration(ns: u64) -> Duration {
    let secs = ns / BILLION;
    let nanos = (ns % BILLION) as u32;
    Duration::new(secs, nanos)
}

/// The default updates per second.
pub const DEFAULT_UPS: u64 = 120;
/// The default maximum frames per second.
pub const DEFAULT_MAX_FPS: u64 = 60;

impl WindowEvents
{
    /// Creates a new event iterator with default UPS and FPS settings.
    pub fn new() -> WindowEvents {
        let start = time::precise_time_ns();
        let updates_per_second = DEFAULT_UPS;
        let max_frames_per_second = DEFAULT_MAX_FPS;
        WindowEvents {
            state: State::Render,
            last_update: start,
            last_frame: start,
            dt_update_in_ns: BILLION / updates_per_second,
            dt_frame_in_ns: BILLION / max_frames_per_second,
            dt: 1.0 / updates_per_second as f64,
            swap_buffers: true,
            bench_mode: false,
        }
    }

    /// Returns the next game event.
    pub fn next<W>(&mut self, window: &mut W) -> Option<Event<W::Event>>
        where W: Window
    {
        loop {
            if window.should_close() { return None; }
            self.state = match self.state {
                State::Render => {
                    if self.bench_mode {
                        // In benchmark mode, pretend FPS is perfect.
                        self.last_frame += self.dt_frame_in_ns;
                    } else {
                        // In normal mode, let the FPS slip if late.
                        self.last_frame = time::precise_time_ns();
                    }

                    let size = window.size();
                    let draw_size = window.draw_size();
                    if size.width != 0 && size.height != 0 {
                        // Swap buffers next time.
                        self.state = State::SwapBuffers;
                        return Some(Event::Render(RenderArgs {
                            // Extrapolate time forward to allow smooth motion.
                            ext_dt: (self.last_frame - self.last_update) as f64
                                    / BILLION as f64,
                            width: size.width,
                            height: size.height,
                            draw_width: draw_size.width,
                            draw_height: draw_size.height,
                        }));
                    }

                    State::UpdateLoop(Idle::No)
                }
                State::SwapBuffers => {
                    if self.swap_buffers {
                        window.swap_buffers();
                        self.state = State::UpdateLoop(Idle::No);
                        return Some(Event::AfterRender(AfterRenderArgs));
                    } else {
                        State::UpdateLoop(Idle::No)
                    }
                }
                State::UpdateLoop(ref mut idle) => {
                    if self.bench_mode {
                        // In benchmark mode, pick the next event without sleep.
                        // Idle and input events are ignored.
                        let next_frame = self.last_frame + self.dt_frame_in_ns;
                        let next_update = self.last_update + self.dt_update_in_ns;
                        let next_event = cmp::min(next_frame, next_update);
                        if next_event == next_frame {
                            State::Render
                        } else {
                            State::HandleEvents(UpdateState {
                                dt_update_in_ns: self.dt_update_in_ns,
                                dt: self.dt,
                            })
                        }
                    } else {
                        let current_time = time::precise_time_ns();
                        let next_frame = self.last_frame + self.dt_frame_in_ns;
                        let next_update = self.last_update + self.dt_update_in_ns;
                        let next_event = cmp::min(next_frame, next_update);
                        if next_event > current_time {
                            if let Some(x) = window.poll_event() {
                                *idle = Idle::No;
                                return Some(Event::Input(x));
                            } else if *idle == Idle::No {
                                *idle = Idle::Yes;
                                let seconds = ((next_event - current_time) as f64) / (BILLION as f64);
                                return Some(Event::Idle(IdleArgs { dt: seconds }))
                            }
                            sleep(ns_to_duration(next_event - current_time));
                            State::UpdateLoop(Idle::No)
                        } else if next_event == next_frame {
                            State::Render
                        } else {
                            State::HandleEvents(UpdateState {
                                dt_update_in_ns: self.dt_update_in_ns,
                                dt: self.dt,
                            })
                        }
                    }
                }
                State::HandleEvents(update_state) => {
                    if self.bench_mode {
                        // Ignore input to prevent it affecting the benchmark.
                        match window.poll_event() {
                            None => State::Update(update_state),
                            Some(_) => State::HandleEvents(update_state),
                        }
                    } else {
                        // Handle all events before updating.
                        match window.poll_event() {
                            None => State::Update(update_state),
                            Some(x) => { return Some(Event::Input(x)); },
                        }
                    }
                }
                State::Update(update_state) => {
                    self.state = State::UpdateLoop(Idle::No);
                    // Use the update state stored right after sleep.
                    // If there are any changes in settings, these will be applied on next update.
                    self.last_update += update_state.dt_update_in_ns;
                    return Some(Event::Update(UpdateArgs{ dt: update_state.dt }));
                }
            };
        }
    }
}

impl EventLoop for WindowEvents {
    fn set_ups(&mut self, frames: u64) {
        self.dt_update_in_ns = BILLION / frames;
        self.dt = 1.0 / frames as f64;
    }

    fn set_max_fps(&mut self, frames: u64) {
        self.dt_frame_in_ns = BILLION / frames;
    }

    fn set_swap_buffers(&mut self, enable: bool) {
        self.swap_buffers = enable;
    }

    fn set_bench_mode(&mut self, enable: bool) {
        self.bench_mode = enable;
    }
}