1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#![deny(missing_docs)]
#![doc(html_root_url = "https://docs.rs/pipe/0.4.0")]
#![cfg_attr(feature = "unstable-doc-cfg", feature(doc_cfg))]

//! Synchronous in-memory pipe
//!
//! ## Example
//!
//! ```
//! use std::thread::spawn;
//! use std::io::{Read, Write};
//!
//! let (mut read, mut write) = pipe::pipe();
//!
//! let message = "Hello, world!";
//! spawn(move || write.write_all(message.as_bytes()).unwrap());
//!
//! let mut s = String::new();
//! read.read_to_string(&mut s).unwrap();
//!
//! assert_eq!(&s, message);
//! ```

#[cfg(feature="readwrite")]
extern crate readwrite;
extern crate crossbeam_channel;

use crossbeam_channel::{Sender, Receiver, SendError, TrySendError};
use std::io::{self, BufRead, Read, Write};
use std::cmp::min;
use std::mem::replace;
use std::hint::unreachable_unchecked;

// value for libstd
const DEFAULT_BUF_SIZE: usize = 8 * 1024;

/// The `Read` end of a pipe (see `pipe()`)
pub struct PipeReader {
    receiver: Receiver<Vec<u8>>,
    buffer: Vec<u8>,
    position: usize,
}

/// The `Write` end of a pipe (see `pipe()`)
#[derive(Clone)]
pub struct PipeWriter {
    sender: Sender<Vec<u8>>
}

/// The `Write` end of a pipe (see `pipe()`) that will buffer small writes before sending
/// to the reader end.
pub struct PipeBufWriter {
    sender: Option<Sender<Vec<u8>>>,
    buffer: Vec<u8>,
    size: usize,
}

/// Creates a synchronous memory pipe
pub fn pipe() -> (PipeReader, PipeWriter) {
    let (sender, receiver) = crossbeam_channel::bounded(0);

    (
        PipeReader { receiver, buffer: Vec::new(), position: 0 },
        PipeWriter { sender },
    )
}

/// Creates a synchronous memory pipe with buffered writer
pub fn pipe_buffered() -> (PipeReader, PipeBufWriter) {
    let (tx, rx) = crossbeam_channel::bounded(0);

    (PipeReader { receiver: rx, buffer: Vec::new(), position: 0 }, PipeBufWriter { sender: Some(tx), buffer: Vec::with_capacity(DEFAULT_BUF_SIZE), size: DEFAULT_BUF_SIZE } )
}

/// Creates a pair of pipes for bidirectional communication, a bit like UNIX's `socketpair(2)`.
#[cfg(feature = "bidirectional")]
#[cfg_attr(feature = "unstable-doc-cfg", doc(cfg(feature = "bidirectional")))]
pub fn bipipe() -> (readwrite::ReadWrite<PipeReader, PipeWriter>, readwrite::ReadWrite<PipeReader, PipeWriter>) {
    let (r1,w1) = pipe();
    let (r2,w2) = pipe();
    ((r1,w2).into(), (r2,w1).into())
}

/// Creates a pair of pipes for bidirectional communication using buffered writer, a bit like UNIX's `socketpair(2)`.
#[cfg(feature = "bidirectional")]
#[cfg_attr(feature = "unstable-doc-cfg", doc(cfg(feature = "bidirectional")))]
pub fn bipipe_buffered() -> (readwrite::ReadWrite<PipeReader, PipeBufWriter>, readwrite::ReadWrite<PipeReader, PipeBufWriter>) {
    let (r1,w1) = pipe_buffered();
    let (r2,w2) = pipe_buffered();
    ((r1,w2).into(), (r2,w1).into())
}

fn epipe() -> io::Error {
    io::Error::new(io::ErrorKind::BrokenPipe, "pipe reader has been dropped")
}

impl PipeWriter {
    /// Extracts the inner `Sender` from the writer
    pub fn into_inner(self) -> Sender<Vec<u8>> {
        self.sender
    }

    /// Gets a reference to the underlying `Sender`
    pub fn sender(&self) -> &Sender<Vec<u8>> {
        &self.sender
    }

    /// Write data to the associated `PipeReader`
    pub fn send<B: Into<Vec<u8>>>(&self, bytes: B) -> io::Result<()> {
        self.sender.send(bytes.into())
            .map_err(|_| epipe())
            .map(drop)
    }
}

impl PipeBufWriter {
    /// Extracts the inner `Sender` from the writer, and any pending buffered data
    pub fn into_inner(mut self) -> (Sender<Vec<u8>>, Vec<u8>) {
        let sender = match replace(&mut self.sender, None) {
            Some(sender) => sender,
            None => unsafe {
                // SAFETY: this is safe as long as `into_inner()` is the only method
                // that clears the sender
                unreachable_unchecked()
            },
        };
        (sender, replace(&mut self.buffer, Vec::new()))
    }

    #[inline]
    /// Gets a reference to the underlying `Sender`
    pub fn sender(&self) -> &Sender<Vec<u8>> {
        match &self.sender {
            Some(sender) => sender,
            None => unsafe {
                // SAFETY: this is safe as long as `into_inner()` is the only method
                // that clears the sender, and this fn is never called afterward
                unreachable_unchecked()
            },
        }
    }

    /// Returns a reference to the internally buffered data.
    pub fn buffer(&self) -> &[u8] {
        &self.buffer
    }

    /// Returns the number of bytes the internal buffer can hold without flushing.
    pub fn capacity(&self) -> usize {
        self.size
    }
}

/// Creates a new handle to the `PipeBufWriter` with a fresh new buffer. Any pending data is still
/// owned by the existing writer and should be flushed if necessary.
impl Clone for PipeBufWriter {
    fn clone(&self) -> Self {
        Self {
            sender: self.sender.clone(),
            buffer: Vec::with_capacity(self.size),
            size: self.size,
        }
    }
}

impl PipeReader {
    /// Extracts the inner `Receiver` from the writer, and any pending buffered data
    pub fn into_inner(mut self) -> (Receiver<Vec<u8>>, Vec<u8>) {
        self.buffer.drain(..self.position);
        (self.receiver, self.buffer)
    }

    /// Returns a reference to the internally buffered data.
    pub fn buffer(&self) -> &[u8] {
        &self.buffer[self.position..]
    }
}

/// Creates a new handle to the `PipeReader` with a fresh new buffer. Any pending data is still
/// owned by the existing reader and will not be accessible from the new handle.
impl Clone for PipeReader {
    fn clone(&self) -> Self {
        Self {
            receiver: self.receiver.clone(),
            buffer: Vec::new(),
            position: 0,
        }
    }
}

impl BufRead for PipeReader {
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        while self.position >= self.buffer.len() {
            match self.receiver.recv() {
                // The only existing error is EOF
                Err(_) => break,
                Ok(data) => {
                    self.buffer = data;
                    self.position = 0;
                }
            }
        }

        Ok(&self.buffer[self.position..])
    }

    fn consume(&mut self, amt: usize) {
        debug_assert!(self.buffer.len() - self.position >= amt);
        self.position += amt
    }
}

impl Read for PipeReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        if buf.is_empty() {
            return Ok(0);
        }

        let internal = self.fill_buf()?;

        let len = min(buf.len(), internal.len());
        if len > 0 {
            buf[..len].copy_from_slice(&internal[..len]);
            self.consume(len);
        }
        Ok(len)
    }
}

impl Write for &'_ PipeWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let data = buf.to_vec();

        self.send(data)
            .map(|_| buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl Write for PipeWriter {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        Write::write(&mut &*self, buf)
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Write::flush(&mut &*self)
    }
}

impl Write for PipeBufWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let buffer_len = self.buffer.len();
        let bytes_written = if buf.len() > self.size {
            // bypass buffering for big writes
            buf.len()
        } else {
            // avoid resizing of the buffer
            min(buf.len(), self.size - buffer_len)
        };
        self.buffer.extend_from_slice(&buf[..bytes_written]);

        if self.buffer.len() >= self.size {
            self.flush()?;
        } else {
            // reserve capacity later to avoid needless allocations
            let data = replace(&mut self.buffer, Vec::new());

            // buffer still has space but try to send it in case the other side already awaits
            match self.sender().try_send(data) {
                Ok(_) => self.buffer.reserve(self.size),
                Err(TrySendError::Full(data)) =>
                    self.buffer = data,
                Err(TrySendError::Disconnected(data)) => {
                    self.buffer = data;
                    self.buffer.truncate(buffer_len);
                    return Err(epipe())
                },
            }
        }

        Ok(bytes_written)
    }

    fn flush(&mut self) -> io::Result<()> {
        if self.buffer.is_empty() {
            Ok(())
        } else {
            let data = replace(&mut self.buffer, Vec::new());
            match self.sender().send(data) {
                Ok(_) => {
                    self.buffer.reserve(self.size);
                    Ok(())
                },
                Err(SendError(data)) => {
                    self.buffer = data;
                    Err(epipe())
                },
            }
        }
    }
}

/// Flushes the contents of the buffer before the writer is dropped. Errors are ignored, so it is
/// recommended that `flush()` be used explicitly instead of relying on Drop.
///
/// This final flush can be avoided by using `drop(writer.into_inner())`.
impl Drop for PipeBufWriter {
    fn drop(&mut self) {
        if !self.buffer.is_empty() {
            let data = replace(&mut self.buffer, Vec::new());
            let _ = self.sender().send(data);
        }
    }
}

#[cfg(test)]
mod tests {
    use std::thread::spawn;
    use std::io::{Read, Write};
    use super::*;

    #[test]
    fn pipe_reader() {
        let i = b"hello there";
        let mut o = Vec::with_capacity(i.len());
        let (mut r, mut w) = pipe();
        let guard = spawn(move || {
            w.write_all(&i[..5]).unwrap();
            w.write_all(&i[5..]).unwrap();
            drop(w);
        });

        r.read_to_end(&mut o).unwrap();
        assert_eq!(i, &o[..]);

        guard.join().unwrap();
    }

    #[test]
    fn pipe_writer_fail() {
        let i = b"hi";
        let (r, mut w) = pipe();
        let guard = spawn(move || {
            drop(r);
        });

        assert!(w.write_all(i).is_err());

        guard.join().unwrap();
    }

    #[test]
    fn small_reads() {
        let block_cnt = 20;
        const BLOCK: usize = 20;
        let (mut r, mut w) = pipe();
        let guard = spawn(move || {
            for _ in 0..block_cnt {
                let data = &[0; BLOCK];
                w.write_all(data).unwrap();
            }
        });

        let mut buff = [0; BLOCK / 2];
        let mut read = 0;
        while let Ok(size) = r.read(&mut buff) {
            // 0 means EOF
            if size == 0 {
                break;
            }
            read += size;
        }
        assert_eq!(block_cnt * BLOCK, read);

        guard.join().unwrap();
    }

    #[test]
    fn pipe_reader_buffered() {
        let i = b"hello there";
        let mut o = Vec::with_capacity(i.len());
        let (mut r, mut w) = pipe_buffered();
        let guard = spawn(move || {
            w.write_all(&i[..5]).unwrap();
            w.write_all(&i[5..]).unwrap();
            w.flush().unwrap();
            drop(w);
        });

        r.read_to_end(&mut o).unwrap();
        assert_eq!(i, &o[..]);

        guard.join().unwrap();
    }

    #[test]
    fn pipe_writer_fail_buffered() {
        let i = &[0; DEFAULT_BUF_SIZE * 2];
        let (r, mut w) = pipe_buffered();
        let guard = spawn(move || {
            drop(r);
        });

        assert!(w.write_all(i).is_err());

        guard.join().unwrap();
    }

    #[test]
    fn small_reads_buffered() {
        let block_cnt = 20;
        const BLOCK: usize = 20;
        let (mut r, mut w) = pipe_buffered();
        let guard = spawn(move || {
            for _ in 0..block_cnt {
                let data = &[0; BLOCK];
                w.write_all(data).unwrap();
            }
            w.flush().unwrap();
        });

        let mut buff = [0; BLOCK / 2];
        let mut read = 0;
        while let Ok(size) = r.read(&mut buff) {
            // 0 means EOF
            if size == 0 {
                break;
            }
            read += size;
        }
        assert_eq!(block_cnt * BLOCK, read);

        guard.join().unwrap();
    }
}