1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#![warn(missing_docs)]

//! A `Pinboard` is a shared, mutable, eventually consistent, lock-free data-structure.  This
//! allows multiple threads to communicate in a decoupled way by publishing data to the pinboard
//! which other threads can then read in an eventually consistent way.
//!
//! This is not a silver bullet though, there are various limitations of `Pinboard` that trade off
//! the nice behaviour described above.
//!
//! * Eventual consistency:
//!     * Writes from one thread are not guaranteed to be seen by reads from another thread
//!     * Writes from one thread can overwrite writes from another thread
//! * No in-place mutation:
//!     * The only write primitive completely overwrites the data on the `Pinboard`
//! * Requires `Clone`:
//!     * All reads return a clone of the data, decoupling the lifetime of the read value from the
//!     data stored in the global reference.

extern crate crossbeam;

use crossbeam::epoch::{Atomic, Owned, pin};
use std::sync::atomic::Ordering::*;

use std::ops::Deref;

/// An instance of a `Pinboard`, holds a shared, mutable, eventually-consistent reference to a `T`.
pub struct Pinboard<T: Clone>(Atomic<T>);

impl<T: Clone> Pinboard<T> {
    /// Create a new `Pinboard` instance holding the given value.
    pub fn new(t: T) -> Pinboard<T> {
        let t = Owned::new(t);
        let p = Pinboard::default();
        p.0.store(Some(t), Release);
        p
    }

    /// Update the value stored in the `Pinboard`.
    pub fn set(&self, t: T) {
        let guard = pin();
        let t = Owned::new(t);
        if let Some(t) = self.0.swap(Some(t), Release, &guard) {
            unsafe {
                guard.unlinked(t);
            }
        }
    }

    /// Clear out the `Pinboard` so its no longer holding any data.
    pub fn clear(&self) {
        let guard = pin();
        if let Some(t) = self.0.swap(None, Release, &guard) {
            unsafe {
                guard.unlinked(t);
            }
        }
    }

    /// Get a copy of the latest (well, recent) version of the posted data.
    pub fn read(&self) -> Option<T> {
        let guard = pin();
        let t = self.0.load(Acquire, &guard);
        t.map(|t| -> &T { t.deref() }).cloned()
    }
}

impl<T: Clone> Default for Pinboard<T> {
    fn default() -> Pinboard<T> {
        Pinboard(Atomic::null())
    }
}

impl<T: Clone> Drop for Pinboard<T> {
    fn drop(&mut self) {
        // Make sure any stored data is marked for deletion
        self.clear();
    }
}

impl<T: Clone> From<Option<T>> for Pinboard<T> {
    fn from(src: Option<T>) -> Pinboard<T> {
        src.map(Pinboard::new).unwrap_or_default()
    }
}

/// An wrapper around a `Pinboard` which provides the guarantee it is never empty.
pub struct NonEmptyPinboard<T: Clone>(Pinboard<T>);

impl<T: Clone> NonEmptyPinboard<T> {
    /// Create a new `NonEmptyPinboard` instance holding the given value.
    pub fn new(t: T) -> NonEmptyPinboard<T> {
        NonEmptyPinboard(Pinboard::new(t))
    }

    /// Update the value stored in the `NonEmptyPinboard`.
    #[inline]
    pub fn set(&self, t: T) {
        self.0.set(t)
    }

    /// Get a copy of the latest (well, recent) version of the posted data.
    #[inline]
    pub fn read(&self) -> T {
        // Unwrap the option returned by the inner `Pinboard`. This will never panic, because it's
        // impossible for this `Pinboard` to be empty (though it's not possible to prove this to the
        // compiler).
        match self.0.read() {
            Some(t) => t,
            None => unreachable!("Inner pointer was unexpectedly null"),
        }
    }
}

macro_rules! debuggable {
    ($struct:ident, $trait:ident) => {
        impl<T: Clone> ::std::fmt::$trait for $struct<T> where T: ::std::fmt::$trait {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> {
                write!(f, "{}(", stringify!($struct))?;
                ::std::fmt::$trait::fmt(&self.read(), f)?;
                write!(f, ")")
            }
        }
    }
}

debuggable!(Pinboard, Debug);
debuggable!(NonEmptyPinboard, Debug);
debuggable!(NonEmptyPinboard, Binary);
debuggable!(NonEmptyPinboard, Display);
debuggable!(NonEmptyPinboard, LowerExp);
debuggable!(NonEmptyPinboard, LowerHex);
debuggable!(NonEmptyPinboard, Octal);
debuggable!(NonEmptyPinboard, Pointer);
debuggable!(NonEmptyPinboard, UpperExp);
debuggable!(NonEmptyPinboard, UpperHex);

#[cfg(test)]
mod tests {
    use super::*;
    use std::fmt::Display;

    fn consume<T: Clone + Display>(t: &Pinboard<T>) {
        loop {
            match t.read() {
                Some(_) => {}
                None => break,
            }
            std::thread::sleep(std::time::Duration::from_millis(1));
        }
    }

    fn produce(t: &Pinboard<u32>) {
        for i in 1..100 {
            t.set(i);
            std::thread::sleep(std::time::Duration::from_millis(2));
        }
        t.clear();
    }

    fn check_debug<T: ::std::fmt::Debug>(_: T) {}

    #[test]
    fn it_works() {
        let t = Pinboard::<u32>::default();
        assert_eq!(None, t.read());
        t.set(3);
        assert_eq!(Some(3), t.read());
        t.clear();
        assert_eq!(None, t.read());
    }

    #[test]
    fn single_producer_single_consumer() {
        let t = Pinboard::<u32>::new(0);

        crossbeam::scope(|scope| {
            scope.spawn(|| produce(&t));
            scope.spawn(|| consume(&t));
        })
    }

    #[test]
    fn multi_producer_single_consumer() {
        let t = Pinboard::<u32>::new(0);

        crossbeam::scope(|scope| {
            scope.spawn(|| produce(&t));
            scope.spawn(|| produce(&t));
            scope.spawn(|| produce(&t));
            scope.spawn(|| consume(&t));
        })
    }

    #[test]
    fn single_producer_multi_consumer() {
        let t = Pinboard::<u32>::new(0);

        crossbeam::scope(|scope| {
            scope.spawn(|| produce(&t));
            scope.spawn(|| consume(&t));
            scope.spawn(|| consume(&t));
            scope.spawn(|| consume(&t));
        })
    }

    #[test]
    fn multi_producer_multi_consumer() {
        let t = Pinboard::<u32>::new(0);

        crossbeam::scope(|scope| {
            scope.spawn(|| produce(&t));
            scope.spawn(|| produce(&t));
            scope.spawn(|| produce(&t));
            scope.spawn(|| consume(&t));
            scope.spawn(|| consume(&t));
            scope.spawn(|| consume(&t));
        })
    }

    #[test]
    fn non_empty_pinboard() {
        let t = NonEmptyPinboard::<u32>::new(3);
        assert_eq!(3, t.read());
        t.set(4);
        assert_eq!(4, t.read());
    }

    #[test]
    fn debuggable() {
        let t = Pinboard::<i32>::new(3);
        check_debug(t);
        let t = NonEmptyPinboard::<i32>::new(2);
        check_debug(t);
    }
}