1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

//! The core functionality of parsing grammar.
//! State of parser during the process of rules handling.

use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use alloc::collections::BTreeSet;
use alloc::rc::Rc;
use alloc::string::String;
use alloc::vec;
use alloc::vec::Vec;
use core::fmt::{Debug, Display, Formatter};
use core::num::NonZeroUsize;
use core::ops::Range;
use core::sync::atomic::{AtomicUsize, Ordering};

use crate::error::{Error, ErrorVariant};
use crate::iterators::pairs::new;
use crate::iterators::{pairs, QueueableToken};
use crate::position::Position;
use crate::span::Span;
use crate::stack::Stack;
use crate::RuleType;

/// The current lookahead status of a [`ParserState`].
///
/// [`ParserState`]: struct.ParserState.html
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Lookahead {
    /// The positive predicate, written as an ampersand &,
    /// attempts to match its inner expression.
    /// If the inner expression succeeds, parsing continues,
    /// but at the same position as the predicate —
    /// &foo ~ bar is thus a kind of "AND" statement:
    /// "the input string must match foo AND bar".
    /// If the inner expression fails,
    /// the whole expression fails too.
    Positive,
    /// The negative predicate, written as an exclamation mark !,
    /// attempts to match its inner expression.
    /// If the inner expression fails, the predicate succeeds
    /// and parsing continues at the same position as the predicate.
    /// If the inner expression succeeds, the predicate fails —
    /// !foo ~ bar is thus a kind of "NOT" statement:
    /// "the input string must match bar but NOT foo".
    Negative,
    /// No lookahead (i.e. it will consume input).
    None,
}

/// The current atomicity of a [`ParserState`].
///
/// [`ParserState`]: struct.ParserState.html
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Atomicity {
    /// prevents implicit whitespace: inside an atomic rule,
    /// the tilde ~ means "immediately followed by",
    /// and repetition operators (asterisk * and plus sign +)
    /// have no implicit separation. In addition, all other rules
    /// called from an atomic rule are also treated as atomic.
    /// (interior matching rules are silent)
    Atomic,
    /// The same as atomic, but inner tokens are produced as normal.
    CompoundAtomic,
    /// implicit whitespace is enabled
    NonAtomic,
}

/// Type alias to simplify specifying the return value of chained closures.
pub type ParseResult<S> = Result<S, S>;

/// Match direction for the stack. Used in `PEEK[a..b]`/`stack_match_peek_slice`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchDir {
    /// from the bottom to the top of the stack
    BottomToTop,
    /// from the top to the bottom of the stack
    TopToBottom,
}

static CALL_LIMIT: AtomicUsize = AtomicUsize::new(0);

/// Sets the maximum call limit for the parser state
/// to prevent stack overflows or excessive execution times
/// in some grammars.
/// If set, the calls are tracked as a running total
/// over all non-terminal rules that can nest closures
/// (which are passed to transform the parser state).
///
/// # Arguments
///
/// * `limit` - The maximum number of calls. If None,
///             the number of calls is unlimited.
pub fn set_call_limit(limit: Option<NonZeroUsize>) {
    CALL_LIMIT.store(limit.map(|f| f.get()).unwrap_or(0), Ordering::Relaxed);
}

#[derive(Debug)]
struct CallLimitTracker {
    current_call_limit: Option<(usize, usize)>,
}

impl Default for CallLimitTracker {
    fn default() -> Self {
        let limit = CALL_LIMIT.load(Ordering::Relaxed);
        let current_call_limit = if limit > 0 { Some((0, limit)) } else { None };
        Self { current_call_limit }
    }
}

impl CallLimitTracker {
    fn limit_reached(&self) -> bool {
        self.current_call_limit
            .map_or(false, |(current, limit)| current >= limit)
    }

    fn increment_depth(&mut self) {
        if let Some((current, _)) = &mut self.current_call_limit {
            *current += 1;
        }
    }
}

/// Number of call stacks that may result from a sequence of rules parsing.
const CALL_STACK_INITIAL_CAPACITY: usize = 20;
/// Max (un)expected number of tokens that we may see on the parsing error position.
const EXPECTED_TOKENS_INITIAL_CAPACITY: usize = 30;
/// Max rule children number for which we'll extend calls stacks.
///
/// In case rule we're working with has too many children rules that failed in parsing,
/// we don't want to store long stacks for all of them. If rule has more than this number
/// of failed children, they all will be collapsed in a parent rule.
const CALL_STACK_CHILDREN_THRESHOLD: usize = 4;

/// Structure tracking errored parsing call (associated with specific `ParserState` function).
#[derive(Debug, Hash, PartialEq, Eq, Clone, PartialOrd, Ord)]
pub enum ParseAttempt<R> {
    /// Call of `rule` errored.
    Rule(R),
    /// Call of token element (e.g., `match_string` or `match_insensitive`) errored.
    /// Works as indicator of that leaf node is not a rule. In order to get the token value we
    /// can address `ParseAttempts` `(un)expected_tokens`.
    Token,
}

impl<R> ParseAttempt<R> {
    pub fn get_rule(&self) -> Option<&R> {
        match self {
            ParseAttempt::Rule(r) => Some(r),
            ParseAttempt::Token => None,
        }
    }
}

/// Rules call stack.
/// Contains sequence of rule calls that resulted in new parsing attempt.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct RulesCallStack<R> {
    /// Deepest rule caused a parsing error (ParseAttempt::Token transformed into a rule).
    pub deepest: ParseAttempt<R>,
    /// Most top rule covering `deepest`.
    pub parent: Option<R>,
}

impl<R> RulesCallStack<R> {
    fn new(deepest: ParseAttempt<R>) -> RulesCallStack<R> {
        RulesCallStack {
            deepest,
            parent: None,
        }
    }
}

#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum ParsingToken {
    Sensitive { token: String },
    Insensitive { token: String },
    Range { start: char, end: char },
    BuiltInRule,
}

impl Display for ParsingToken {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        match self {
            ParsingToken::Sensitive { token } => write!(f, "{token}"),
            ParsingToken::Insensitive { token } => write!(f, "{}", token.to_uppercase()),
            ParsingToken::Range { start, end } => write!(f, "{start}..{end}"),
            ParsingToken::BuiltInRule => write!(f, "BUILTIN_RULE"),
        }
    }
}

/// Structure that tracks all the parsing attempts made on the max position.
/// We want to give an error hint about parsing rules that succeeded
/// at the farthest input position.
/// The intuition is such rules will be most likely the query user initially wanted to write.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct ParseAttempts<R> {
    /// Vec of rule calls sequences awaiting tokens at the same `max_position`.
    /// If there are several stacks in vec, it means all those rule stacks are "equal"
    /// because their attempts occurred on the same position.
    pub call_stacks: Vec<RulesCallStack<R>>,
    /// Tokens that could be putted at `max_position`
    /// in order to get a valid grammar query.
    expected_tokens: Vec<ParsingToken>,
    /// Tokens that we've prohibited to be putted at `max_position`
    /// in order to get a valid grammar query.
    unexpected_tokens: Vec<ParsingToken>,
    /// Max position at which we were expecting to see one of `expected_tokens`.
    pub max_position: usize,
}

impl<R: RuleType> ParseAttempts<R> {
    /// Create new `ParseAttempts` instance with `call_stacks` and `expected_tokens`
    /// initialized with capacity.
    pub fn new() -> Self {
        Self {
            call_stacks: Vec::with_capacity(CALL_STACK_INITIAL_CAPACITY),
            expected_tokens: Vec::with_capacity(EXPECTED_TOKENS_INITIAL_CAPACITY),
            unexpected_tokens: Vec::with_capacity(EXPECTED_TOKENS_INITIAL_CAPACITY),
            max_position: 0,
        }
    }

    /// Get number of currently present call stacks.
    fn call_stacks_number(&self) -> usize {
        self.call_stacks.len()
    }

    pub fn expected_tokens(&self) -> Vec<ParsingToken> {
        self.expected_tokens
            .iter()
            .cloned()
            .collect::<BTreeSet<_>>()
            .into_iter()
            .collect()
    }

    pub fn unexpected_tokens(&self) -> Vec<ParsingToken> {
        self.unexpected_tokens
            .iter()
            .cloned()
            .collect::<BTreeSet<_>>()
            .into_iter()
            .collect()
    }

    /// Retrieve call stacks.
    pub fn call_stacks(&self) -> Vec<RulesCallStack<R>> {
        self.call_stacks
            .iter()
            .cloned()
            .collect::<BTreeSet<_>>()
            .into_iter()
            .collect()
    }

    /// In case we've tried to parse a rule, which start position is bigger than previous
    /// `max_position` it means that we've advanced in our parsing and found better candidate.
    ///
    /// `start_index` is:
    /// * Number of call stacks present in state at the moment current `rule` was called. The idea
    ///   is that we'd like to update only those stacks that originated from the current `rule` and
    ///   not from those that were called previously.
    /// * 0 in case we've successfully parsed some token since the moment `rule` was called.
    fn try_add_new_stack_rule(&mut self, rule: R, start_index: usize) {
        let mut non_token_call_stacks = Vec::new();
        let mut token_call_stack_met = false;
        for call_stack in self.call_stacks.iter().skip(start_index) {
            if matches!(call_stack.deepest, ParseAttempt::Token) {
                token_call_stack_met = true;
            } else {
                non_token_call_stacks.push(call_stack.clone())
            }
        }
        if token_call_stack_met && non_token_call_stacks.is_empty() {
            // If `non_token_call_stacks` is not empty we wouldn't like to add a new standalone
            // `RulesCallStack::new(ParseAttempt::Token)` (that will later be transformed into a
            // rule) as soon as it doesn't give us any useful additional info.
            non_token_call_stacks.push(RulesCallStack::new(ParseAttempt::Token));
        }
        self.call_stacks
            .splice(start_index.., non_token_call_stacks);

        let children_number_over_threshold =
            self.call_stacks_number() - start_index >= CALL_STACK_CHILDREN_THRESHOLD;
        if children_number_over_threshold {
            self.call_stacks.truncate(start_index);
            self.call_stacks
                .push(RulesCallStack::new(ParseAttempt::Rule(rule)));
        } else {
            for call_stack in self.call_stacks.iter_mut().skip(start_index) {
                if matches!(call_stack.deepest, ParseAttempt::Token) {
                    call_stack.deepest = ParseAttempt::Rule(rule);
                } else {
                    call_stack.parent = Some(rule);
                }
            }
        }
    }

    /// If `expected` flag is set to false, it means we've successfully parsed token being in the
    /// state of negative lookahead and want to track `token` in the `unexpected_tokens`. Otherwise,
    /// we want to track it the `expected_tokens`. Let's call chosen vec a `target_vec`.
    ///
    /// In case `position` is:
    /// * Equal to `max_position`, add `token` to `target_vec`,
    /// * Bigger than `max_position`, set `token` as the only new element of `target_vec`.
    #[allow(clippy::comparison_chain)]
    fn try_add_new_token(
        &mut self,
        token: ParsingToken,
        start_position: usize,
        position: usize,
        negative_lookahead: bool,
    ) {
        let target_vec_push_token = |attempts: &mut ParseAttempts<R>| {
            let target_vec = if negative_lookahead {
                &mut attempts.unexpected_tokens
            } else {
                &mut attempts.expected_tokens
            };
            target_vec.push(token);
        };

        if position > self.max_position {
            if negative_lookahead && start_position > self.max_position {
                // We encountered a sequence under negative lookahead.
                // We would like to track only first failed token in this sequence (which
                // `start_position` should be equal to `self.max_position`).
                return;
            }
            target_vec_push_token(self);

            if negative_lookahead {
                // In case of successful parsing of token under negative lookahead the only
                // thing we'd like to do is to track the token in the `unexpected_tokens`.
                return;
            }
            self.max_position = position;
            self.expected_tokens.clear();
            self.unexpected_tokens.clear();
            self.call_stacks.clear();
            self.call_stacks
                .push(RulesCallStack::new(ParseAttempt::Token));
        } else if position == self.max_position {
            target_vec_push_token(self);
            self.call_stacks
                .push(RulesCallStack::new(ParseAttempt::Token));
        }
    }

    /// Reset state in case we've successfully parsed some token in
    /// `match_string` or `match_insensetive`.
    fn nullify_expected_tokens(&mut self, new_max_position: usize) {
        self.call_stacks.clear();
        self.expected_tokens.clear();
        self.unexpected_tokens.clear();
        self.max_position = new_max_position;
    }
}

impl<R: RuleType> Default for ParseAttempts<R> {
    fn default() -> Self {
        Self::new()
    }
}

/// The complete state of a [`Parser`].
///
/// [`Parser`]: trait.Parser.html
#[derive(Debug)]
pub struct ParserState<'i, R: RuleType> {
    /// Current position from which we try to apply some parser function.
    /// Initially is 0.
    /// E.g., we are parsing `create user 'Bobby'` query, we parsed "create" via `match_insensitive`
    /// and switched our `position` from 0 to the length of "create".
    ///
    /// E.g., see `match_string` -> `self.position.match_string(string)` which updates `self.pos`.
    position: Position<'i>,
    /// Queue representing rules partially (`QueueableToken::Start`) and
    /// totally (`QueueableToken::End`) parsed. When entering rule we put it in the queue in a state
    /// of `Start` and after all it's sublogic (subrules or strings) are parsed, we change it to
    /// `End` state.
    queue: Vec<QueueableToken<'i, R>>,
    /// Status set in case specific lookahead logic is used in grammar.
    /// See `Lookahead` for more information.
    lookahead: Lookahead,
    /// Rules that we HAVE expected, tried to parse, but failed.
    pos_attempts: Vec<R>,
    /// Rules that we have NOT expected, tried to parse, but failed.
    neg_attempts: Vec<R>,
    /// Max position in the query from which we've tried to parse some rule but failed.
    attempt_pos: usize,
    /// Current atomicity status. For more information see `Atomicity`.
    atomicity: Atomicity,
    /// Helper structure tracking `Stack` status (used in case grammar contains stack PUSH/POP
    /// invocations).
    stack: Stack<Span<'i>>,
    /// Used for setting max parser calls limit.
    call_tracker: CallLimitTracker,
    /// Together with tracking of `pos_attempts` and `attempt_pos`
    /// as a pair of (list of rules that we've tried to parse but failed, max parsed position)
    /// we track those rules (which we've tried to parse at the same max pos) at this helper struct.
    ///
    /// Note, that we may try to parse several rules on different positions. We want to track only
    /// those rules, which attempt position is bigger, because we consider that it's nearer to the
    /// query that user really wanted to pass.
    ///
    /// E.g. we have a query `create user "Bobby"` and two root rules:
    /// * CreateUser  = { "create" ~ "user"  ~ Name }
    /// * CreateTable = { "create" ~ "table" ~ Name }
    /// * Name = { SOME_DEFINITION }
    /// While parsing the query we'll update tracker position to the start of "Bobby", because we'd
    /// successfully parse "create" + "user" (and not "table").
    parse_attempts: ParseAttempts<R>,
}

/// Creates a `ParserState` from a `&str`, supplying it to a closure `f`.
///
/// # Examples
///
/// ```
/// # use pest;
/// let input = "";
/// pest::state::<(), _>(input, |s| Ok(s)).unwrap();
/// ```
#[allow(clippy::perf)]
pub fn state<'i, R: RuleType, F>(input: &'i str, f: F) -> Result<pairs::Pairs<'i, R>, Error<R>>
where
    F: FnOnce(Box<ParserState<'i, R>>) -> ParseResult<Box<ParserState<'i, R>>>,
{
    let state = ParserState::new(input);

    match f(state) {
        Ok(state) => {
            let len = state.queue.len();
            Ok(new(Rc::new(state.queue), input, None, 0, len))
        }
        Err(mut state) => {
            let variant = if state.reached_call_limit() {
                ErrorVariant::CustomError {
                    message: "call limit reached".to_owned(),
                }
            } else {
                state.pos_attempts.sort();
                state.pos_attempts.dedup();
                state.neg_attempts.sort();
                state.neg_attempts.dedup();
                ErrorVariant::ParsingError {
                    positives: state.pos_attempts.clone(),
                    negatives: state.neg_attempts.clone(),
                }
            };

            Err(Error::new_from_pos_with_parsing_attempts(
                variant,
                Position::new_internal(input, state.attempt_pos),
                state.parse_attempts.clone(),
            ))
        }
    }
}

impl<'i, R: RuleType> ParserState<'i, R> {
    /// Allocates a fresh `ParserState` object to the heap and returns the owned `Box`. This `Box`
    /// will be passed from closure to closure based on the needs of the specified `Parser`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// let input = "";
    /// let state: Box<pest::ParserState<&str>> = pest::ParserState::new(input);
    /// ```
    pub fn new(input: &'i str) -> Box<Self> {
        Box::new(ParserState {
            position: Position::from_start(input),
            queue: vec![],
            lookahead: Lookahead::None,
            pos_attempts: vec![],
            neg_attempts: vec![],
            attempt_pos: 0,
            atomicity: Atomicity::NonAtomic,
            stack: Stack::new(),
            call_tracker: Default::default(),
            parse_attempts: ParseAttempts::new(),
        })
    }

    /// Get all parse attempts after process of parsing is finished.
    pub fn get_parse_attempts(&self) -> &ParseAttempts<R> {
        &self.parse_attempts
    }

    /// Returns a reference to the current `Position` of the `ParserState`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     ab
    /// }
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let position = state.position();
    /// assert_eq!(position.pos(), 0);
    /// ```
    pub fn position(&self) -> &Position<'i> {
        &self.position
    }

    /// Returns the current atomicity of the `ParserState`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # use pest::Atomicity;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     ab
    /// }
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let atomicity = state.atomicity();
    /// assert_eq!(atomicity, Atomicity::NonAtomic);
    /// ```
    pub fn atomicity(&self) -> Atomicity {
        self.atomicity
    }

    #[inline]
    fn inc_call_check_limit(mut self: Box<Self>) -> ParseResult<Box<Self>> {
        if self.call_tracker.limit_reached() {
            return Err(self);
        }
        self.call_tracker.increment_depth();
        Ok(self)
    }

    #[inline]
    fn reached_call_limit(&self) -> bool {
        self.call_tracker.limit_reached()
    }

    /// Wrapper needed to generate tokens. This will associate the `R` type rule to the closure
    /// meant to match the rule.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     a
    /// }
    ///
    /// let input = "a";
    /// let pairs: Vec<_> = pest::state(input, |state| {
    ///     state.rule(Rule::a, |s| Ok(s))
    /// }).unwrap().collect();
    ///
    /// assert_eq!(pairs.len(), 1);
    /// ```
    #[inline]
    pub fn rule<F>(mut self: Box<Self>, rule: R, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        // Position from which this `rule` starts parsing.
        let actual_pos = self.position.pos();
        // Remember index of the `self.queue` element that will be associated with this `rule`.
        let index = self.queue.len();

        let (pos_attempts_index, neg_attempts_index) = if actual_pos == self.attempt_pos {
            (self.pos_attempts.len(), self.neg_attempts.len())
        } else {
            // Attempts have not been cleared yet since the attempt_pos is older.
            (0, 0)
        };

        if self.lookahead == Lookahead::None && self.atomicity != Atomicity::Atomic {
            // Pair's position will only be known after running the closure.
            self.queue.push(QueueableToken::Start {
                end_token_index: 0,
                input_pos: actual_pos,
            });
        }

        // Remember attempts number before `f` call.
        // In `track` using this variable we can say, how many attempts were added
        // during children rules traversal.
        let attempts = self.attempts_at(actual_pos);
        // Number of call stacks present in `self.parse_attempts` before `f` call.
        // We need to remember this number only in case there wasn't found any farther attempt.
        // E.g. we are handling rule, on start position of which may be tested two
        // children rules. At the moment we'll return from `f` call below,
        // there will be two more children rules in `self.parse_attempts` that we'll
        // consider to be the children of current `rule`.
        let mut remember_call_stacks_number = self.parse_attempts.call_stacks_number();
        // Max parsing attempt position at the moment of `rule` handling.
        // It case it's raised during children rules handling, it means
        // we've made a parsing progress.
        let remember_max_position = self.parse_attempts.max_position;

        let result = f(self);

        let mut try_add_rule_to_stack = |new_state: &mut Box<ParserState<'_, R>>| {
            if new_state.parse_attempts.max_position > remember_max_position {
                // It means that one of `match_string` or e.g. `match_insensetive` function calls
                // have already erased `self.parse_attempts.call_stacks` and that previously
                // remembered values are not valid anymore.
                remember_call_stacks_number = 0;
            }
            if !matches!(new_state.atomicity, Atomicity::Atomic) {
                new_state
                    .parse_attempts
                    .try_add_new_stack_rule(rule, remember_call_stacks_number);
            }
        };

        match result {
            Ok(mut new_state) => {
                if new_state.lookahead == Lookahead::Negative {
                    new_state.track(
                        rule,
                        actual_pos,
                        pos_attempts_index,
                        neg_attempts_index,
                        attempts,
                    );
                }

                if new_state.lookahead == Lookahead::None
                    && new_state.atomicity != Atomicity::Atomic
                {
                    // Index of `QueueableToken::End` token added below
                    // that corresponds to previously added `QueueableToken::Start` token.
                    let new_index = new_state.queue.len();
                    match new_state.queue[index] {
                        QueueableToken::Start {
                            ref mut end_token_index,
                            ..
                        } => *end_token_index = new_index,
                        _ => unreachable!(),
                    };

                    let new_pos = new_state.position.pos();

                    new_state.queue.push(QueueableToken::End {
                        start_token_index: index,
                        rule,
                        tag: None,
                        input_pos: new_pos,
                    });
                }

                // Note, that we need to count positive parsing results too, because we can fail in
                // optional rule call inside which may lie the farthest
                // parsed token.
                try_add_rule_to_stack(&mut new_state);
                Ok(new_state)
            }
            Err(mut new_state) => {
                if new_state.lookahead != Lookahead::Negative {
                    new_state.track(
                        rule,
                        actual_pos,
                        pos_attempts_index,
                        neg_attempts_index,
                        attempts,
                    );
                    try_add_rule_to_stack(&mut new_state);
                }

                if new_state.lookahead == Lookahead::None
                    && new_state.atomicity != Atomicity::Atomic
                {
                    new_state.queue.truncate(index);
                }

                Err(new_state)
            }
        }
    }

    /// Tag current node
    ///
    /// # Examples
    ///
    /// Try to recognize the one specified in a set of characters
    ///
    /// ```
    /// use pest::{state, ParseResult, ParserState, iterators::Pair};
    /// #[allow(non_camel_case_types)]
    /// #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     character,
    /// }
    /// fn mark_c(state: Box<ParserState<Rule>>) -> ParseResult<Box<ParserState<Rule>>> {
    ///     state.sequence(|state| {
    ///         character(state)
    ///             .and_then(|state| character(state))
    ///             .and_then(|state| character(state))
    ///             .and_then(|state| state.tag_node("c"))
    ///             .and_then(|state| character(state))
    ///     })
    /// }
    /// fn character(state: Box<ParserState<Rule>>) -> ParseResult<Box<ParserState<Rule>>> {
    ///     state.rule(Rule::character, |state| state.match_range('a'..'z'))
    /// }
    ///
    /// let input = "abcd";
    /// let pairs = state(input, mark_c).unwrap();
    /// // find all node tag as `c`
    /// let find: Vec<Pair<Rule>> = pairs.filter(|s| s.as_node_tag() == Some("c")).collect();
    /// assert_eq!(find[0].as_str(), "c")
    /// ```
    #[inline]
    pub fn tag_node(mut self: Box<Self>, tag: &'i str) -> ParseResult<Box<Self>> {
        if let Some(QueueableToken::End { tag: old, .. }) = self.queue.last_mut() {
            *old = Some(tag)
        }
        Ok(self)
    }

    /// Get number of allowed rules attempts + prohibited rules attempts.
    fn attempts_at(&self, pos: usize) -> usize {
        if self.attempt_pos == pos {
            self.pos_attempts.len() + self.neg_attempts.len()
        } else {
            0
        }
    }

    fn track(
        &mut self,
        rule: R,
        pos: usize,
        pos_attempts_index: usize,
        neg_attempts_index: usize,
        prev_attempts: usize,
    ) {
        if self.atomicity == Atomicity::Atomic {
            return;
        }

        // If nested rules made no progress, there is no use to report them; it's only useful to
        // track the current rule, the exception being when only one attempt has been made during
        // the children rules.
        let curr_attempts = self.attempts_at(pos);
        if curr_attempts > prev_attempts && curr_attempts - prev_attempts == 1 {
            return;
        }

        if pos == self.attempt_pos {
            self.pos_attempts.truncate(pos_attempts_index);
            self.neg_attempts.truncate(neg_attempts_index);
        }

        if pos > self.attempt_pos {
            self.pos_attempts.clear();
            self.neg_attempts.clear();
            self.attempt_pos = pos;
        }

        let attempts = if self.lookahead != Lookahead::Negative {
            &mut self.pos_attempts
        } else {
            &mut self.neg_attempts
        };

        if pos == self.attempt_pos {
            attempts.push(rule);
        }
    }

    /// Starts a sequence of transformations provided by `f` from the `Box<ParserState>`. Returns
    /// the same `Result` returned by `f` in the case of an `Ok`, or `Err` with the current
    /// `Box<ParserState>` otherwise.
    ///
    /// This method is useful to parse sequences that only match together which usually come in the
    /// form of chained `Result`s with
    /// [`Result::and_then`](https://doc.rust-lang.org/std/result/enum.Result.html#method.and_then).
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     a
    /// }
    ///
    /// let input = "a";
    /// let pairs: Vec<_> = pest::state(input, |state| {
    ///     state.sequence(|s| {
    ///         s.rule(Rule::a, |s| Ok(s)).and_then(|s| {
    ///             s.match_string("b")
    ///         })
    ///     }).or_else(|s| {
    ///         Ok(s)
    ///     })
    /// }).unwrap().collect();
    ///
    /// assert_eq!(pairs.len(), 0);
    /// ```
    #[inline]
    pub fn sequence<F>(mut self: Box<Self>, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        let token_index = self.queue.len();
        let initial_pos = self.position;

        let result = f(self);

        match result {
            Ok(new_state) => Ok(new_state),
            Err(mut new_state) => {
                // Restore the initial position and truncate the token queue.
                new_state.position = initial_pos;
                new_state.queue.truncate(token_index);
                Err(new_state)
            }
        }
    }

    /// Repeatedly applies the transformation provided by `f` from the `Box<ParserState>`. Returns
    /// `Ok` with the updated `Box<ParserState>` returned by `f` wrapped up in an `Err`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     ab
    /// }
    ///
    /// let input = "aab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.repeat(|s| {
    ///     s.match_string("a")
    /// });
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    ///
    /// state = pest::ParserState::new(input);
    /// result = state.repeat(|s| {
    ///     s.match_string("b")
    /// });
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 0);
    /// ```
    #[inline]
    pub fn repeat<F>(mut self: Box<Self>, mut f: F) -> ParseResult<Box<Self>>
    where
        F: FnMut(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        let mut result = f(self);

        loop {
            match result {
                Ok(state) => result = f(state),
                Err(state) => return Ok(state),
            };
        }
    }

    /// Optionally applies the transformation provided by `f` from the `Box<ParserState>`. Returns
    /// `Ok` with the updated `Box<ParserState>` returned by `f` regardless of the `Result`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     ab
    /// }
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let result = state.optional(|s| {
    ///     s.match_string("ab")
    /// });
    /// assert!(result.is_ok());
    ///
    /// state = pest::ParserState::new(input);
    /// let result = state.optional(|s| {
    ///     s.match_string("ac")
    /// });
    /// assert!(result.is_ok());
    /// ```
    #[inline]
    pub fn optional<F>(mut self: Box<Self>, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        match f(self) {
            Ok(state) | Err(state) => Ok(state),
        }
    }

    /// Generic function to handle result of char/string/range parsing
    /// in order to track (un)expected tokens.
    fn handle_token_parse_result(
        &mut self,
        start_position: usize,
        token: ParsingToken,
        parse_succeeded: bool,
    ) {
        // New position after tracked parsed element for case of `parse_succeded` is true.
        // Position of parsing failure otherwise.
        let current_pos = self.position.pos();

        if parse_succeeded {
            if self.lookahead == Lookahead::Negative {
                self.parse_attempts
                    .try_add_new_token(token, start_position, current_pos, true);
            } else if current_pos > self.parse_attempts.max_position {
                self.parse_attempts.nullify_expected_tokens(current_pos);
            }
        } else if self.lookahead != Lookahead::Negative {
            self.parse_attempts
                .try_add_new_token(token, start_position, current_pos, false);
        }
    }

    /// Attempts to match a single character based on a filter function. Returns `Ok` with the
    /// updated `Box<ParserState>` if successful, or `Err` with the updated `Box<ParserState>`
    /// otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let result = state.match_char_by(|c| c.is_ascii());
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 1);
    ///
    /// let input = "❤";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let result = state.match_char_by(|c| c.is_ascii());
    /// assert!(result.is_err());
    /// assert_eq!(result.unwrap_err().position().pos(), 0);
    /// ```
    #[inline]
    pub fn match_char_by<F>(mut self: Box<Self>, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(char) -> bool,
    {
        let token = ParsingToken::BuiltInRule;
        let start_position = self.position.pos();
        if self.position.match_char_by(f) {
            self.handle_token_parse_result(start_position, token, true);
            Ok(self)
        } else {
            self.handle_token_parse_result(start_position, token, false);
            Err(self)
        }
    }

    /// Attempts to match the given string. Returns `Ok` with the updated `Box<ParserState>` if
    /// successful, or `Err` with the updated `Box<ParserState>` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.match_string("ab");
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    ///
    /// state = pest::ParserState::new(input);
    /// result = state.match_string("ac");
    /// assert!(result.is_err());
    /// assert_eq!(result.unwrap_err().position().pos(), 0);
    /// ```
    #[inline]
    pub fn match_string(mut self: Box<Self>, string: &str) -> ParseResult<Box<Self>> {
        let token = ParsingToken::Sensitive {
            token: String::from(string),
        };
        let start_position = self.position.pos();
        if self.position.match_string(string) {
            self.handle_token_parse_result(start_position, token, true);
            Ok(self)
        } else {
            self.handle_token_parse_result(start_position, token, false);
            Err(self)
        }
    }

    /// Attempts to case-insensitively match the given string. Returns `Ok` with the updated
    /// `Box<ParserState>` if successful, or `Err` with the updated `Box<ParserState>` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.match_insensitive("AB");
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    ///
    /// state = pest::ParserState::new(input);
    /// result = state.match_insensitive("AC");
    /// assert!(result.is_err());
    /// assert_eq!(result.unwrap_err().position().pos(), 0);
    /// ```
    #[inline]
    pub fn match_insensitive(mut self: Box<Self>, string: &str) -> ParseResult<Box<Self>> {
        let token = ParsingToken::Insensitive {
            token: String::from(string),
        };
        let start_position = self.position().pos();
        if self.position.match_insensitive(string) {
            self.handle_token_parse_result(start_position, token, true);
            Ok(self)
        } else {
            self.handle_token_parse_result(start_position, token, false);
            Err(self)
        }
    }

    /// Attempts to match a single character from the given range. Returns `Ok` with the updated
    /// `Box<ParserState>` if successful, or `Err` with the updated `Box<ParserState>` otherwise.
    ///
    /// # Caution
    /// The provided `range` is interpreted as inclusive.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.match_range('a'..'z');
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 1);
    ///
    /// state = pest::ParserState::new(input);
    /// result = state.match_range('A'..'Z');
    /// assert!(result.is_err());
    /// assert_eq!(result.unwrap_err().position().pos(), 0);
    /// ```
    #[inline]
    pub fn match_range(mut self: Box<Self>, range: Range<char>) -> ParseResult<Box<Self>> {
        let token = ParsingToken::Range {
            start: range.start,
            end: range.end,
        };
        let start_position = self.position().pos();
        if self.position.match_range(range) {
            self.handle_token_parse_result(start_position, token, true);
            Ok(self)
        } else {
            self.handle_token_parse_result(start_position, token, false);
            Err(self)
        }
    }

    /// Attempts to skip `n` characters forward. Returns `Ok` with the updated `Box<ParserState>`
    /// if successful, or `Err` with the updated `Box<ParserState>` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.skip(1);
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 1);
    ///
    /// state = pest::ParserState::new(input);
    /// result = state.skip(3);
    /// assert!(result.is_err());
    /// assert_eq!(result.unwrap_err().position().pos(), 0);
    /// ```
    #[inline]
    pub fn skip(mut self: Box<Self>, n: usize) -> ParseResult<Box<Self>> {
        if self.position.skip(n) {
            Ok(self)
        } else {
            Err(self)
        }
    }

    /// Attempts to skip forward until one of the given strings is found. Returns `Ok` with the
    /// updated `Box<ParserState>` whether or not one of the strings is found.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "abcd";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.skip_until(&["c", "d"]);
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    /// ```
    #[inline]
    pub fn skip_until(mut self: Box<Self>, strings: &[&str]) -> ParseResult<Box<Self>> {
        self.position.skip_until(strings);
        Ok(self)
    }

    /// Attempts to match the start of the input. Returns `Ok` with the current `Box<ParserState>`
    /// if the parser has not yet advanced, or `Err` with the current `Box<ParserState>` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.start_of_input();
    /// assert!(result.is_ok());
    ///
    /// state = pest::ParserState::new(input);
    /// state = state.match_string("ab").unwrap();
    /// result = state.start_of_input();
    /// assert!(result.is_err());
    /// ```
    #[inline]
    pub fn start_of_input(self: Box<Self>) -> ParseResult<Box<Self>> {
        if self.position.at_start() {
            Ok(self)
        } else {
            Err(self)
        }
    }

    /// Attempts to match the end of the input. Returns `Ok` with the current `Box<ParserState>` if
    /// there is no input remaining, or `Err` with the current `Box<ParserState>` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.end_of_input();
    /// assert!(result.is_err());
    ///
    /// state = pest::ParserState::new(input);
    /// state = state.match_string("ab").unwrap();
    /// result = state.end_of_input();
    /// assert!(result.is_ok());
    /// ```
    #[inline]
    pub fn end_of_input(self: Box<Self>) -> ParseResult<Box<Self>> {
        if self.position.at_end() {
            Ok(self)
        } else {
            Err(self)
        }
    }

    /// Starts a lookahead transformation provided by `f` from the `Box<ParserState>`. It returns
    /// `Ok` with the current `Box<ParserState>` if `f` also returns an `Ok`, or `Err` with the current
    /// `Box<ParserState>` otherwise. If `is_positive` is `false`, it swaps the `Ok` and `Err`
    /// together, negating the `Result`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     a
    /// }
    ///
    /// let input = "a";
    /// let pairs: Vec<_> = pest::state(input, |state| {
    ///     state.lookahead(true, |state| {
    ///         state.rule(Rule::a, |s| Ok(s))
    ///     })
    /// }).unwrap().collect();
    ///
    /// assert_eq!(pairs.len(), 0);
    /// ```
    #[inline]
    pub fn lookahead<F>(mut self: Box<Self>, is_positive: bool, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        let initial_lookahead = self.lookahead;

        self.lookahead = if is_positive {
            match initial_lookahead {
                Lookahead::None | Lookahead::Positive => Lookahead::Positive,
                Lookahead::Negative => Lookahead::Negative,
            }
        } else {
            match initial_lookahead {
                Lookahead::None | Lookahead::Positive => Lookahead::Negative,
                Lookahead::Negative => Lookahead::Positive,
            }
        };

        let initial_pos = self.position;

        let result = f(self.checkpoint());

        let result_state = match result {
            Ok(mut new_state) => {
                new_state.position = initial_pos;
                new_state.lookahead = initial_lookahead;
                Ok(new_state.restore())
            }
            Err(mut new_state) => {
                new_state.position = initial_pos;
                new_state.lookahead = initial_lookahead;
                Err(new_state.restore())
            }
        };

        if is_positive {
            result_state
        } else {
            match result_state {
                Ok(state) => Err(state),
                Err(state) => Ok(state),
            }
        }
    }

    /// Transformation which stops `Token`s from being generated according to `is_atomic`.
    /// Used as wrapper over `rule` (or even another `atomic`) call.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest::{self, Atomicity};
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {
    ///     a
    /// }
    ///
    /// let input = "a";
    /// let pairs: Vec<_> = pest::state(input, |state| {
    ///     state.atomic(Atomicity::Atomic, |s| {
    ///         s.rule(Rule::a, |s| Ok(s))
    ///     })
    /// }).unwrap().collect();
    ///
    /// assert_eq!(pairs.len(), 0);
    /// ```
    #[inline]
    pub fn atomic<F>(mut self: Box<Self>, atomicity: Atomicity, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        // In case child parsing call is another `atomic` it will have it's own atomicity status.
        let initial_atomicity = self.atomicity;
        // In case child atomicity is the same as we've demanded, we shouldn't do nothing.
        // E.g. we have the following rules:
        // * RootRule = @{ InnerRule }
        // * InnerRule = @{ ... }
        let should_toggle = self.atomicity != atomicity;

        // Note that we take atomicity of the top rule and not of the leaf (inner).
        if should_toggle {
            self.atomicity = atomicity;
        }

        let result = f(self);

        match result {
            Ok(mut new_state) => {
                if should_toggle {
                    new_state.atomicity = initial_atomicity;
                }
                Ok(new_state)
            }
            Err(mut new_state) => {
                if should_toggle {
                    new_state.atomicity = initial_atomicity;
                }
                Err(new_state)
            }
        }
    }

    /// Evaluates the result of closure `f` and pushes the span of the input consumed from before
    /// `f` is called to after `f` is called to the stack. Returns `Ok(Box<ParserState>)` if `f` is
    /// called successfully, or `Err(Box<ParserState>)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.stack_push(|state| state.match_string("a"));
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 1);
    /// ```
    #[inline]
    pub fn stack_push<F>(mut self: Box<Self>, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        self = self.inc_call_check_limit()?;
        let start = self.position;

        let result = f(self);

        match result {
            Ok(mut state) => {
                let end = state.position;
                state.stack.push(start.span(&end));
                Ok(state)
            }
            Err(state) => Err(state),
        }
    }

    /// Peeks the top of the stack and attempts to match the string. Returns `Ok(Box<ParserState>)`
    /// if the string is matched successfully, or `Err(Box<ParserState>)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "aa";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.stack_push(|state| state.match_string("a")).and_then(
    ///     |state| state.stack_peek()
    /// );
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    /// ```
    #[inline]
    pub fn stack_peek(self: Box<Self>) -> ParseResult<Box<Self>> {
        let string = self
            .stack
            .peek()
            .expect("peek was called on empty stack")
            .as_str();
        self.match_string(string)
    }

    /// Pops the top of the stack and attempts to match the string. Returns `Ok(Box<ParserState>)`
    /// if the string is matched successfully, or `Err(Box<ParserState>)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "aa";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.stack_push(|state| state.match_string("a")).and_then(
    ///     |state| state.stack_pop()
    /// );
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 2);
    /// ```
    #[inline]
    pub fn stack_pop(mut self: Box<Self>) -> ParseResult<Box<Self>> {
        let string = self
            .stack
            .pop()
            .expect("pop was called on empty stack")
            .as_str();
        self.match_string(string)
    }

    /// Matches part of the state of the stack.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest::{self, MatchDir};
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "abcd cd cb";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state
    ///     .stack_push(|state| state.match_string("a"))
    ///     .and_then(|state| state.stack_push(|state| state.match_string("b")))
    ///     .and_then(|state| state.stack_push(|state| state.match_string("c")))
    ///     .and_then(|state| state.stack_push(|state| state.match_string("d")))
    ///     .and_then(|state| state.match_string(" "))
    ///     .and_then(|state| state.stack_match_peek_slice(2, None, MatchDir::BottomToTop))
    ///     .and_then(|state| state.match_string(" "))
    ///     .and_then(|state| state.stack_match_peek_slice(1, Some(-1), MatchDir::TopToBottom));
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 10);
    /// ```
    #[inline]
    pub fn stack_match_peek_slice(
        mut self: Box<Self>,
        start: i32,
        end: Option<i32>,
        match_dir: MatchDir,
    ) -> ParseResult<Box<Self>> {
        let range = match constrain_idxs(start, end, self.stack.len()) {
            Some(r) => r,
            None => return Err(self),
        };
        // return true if an empty sequence is requested
        if range.end <= range.start {
            return Ok(self);
        }

        let mut position = self.position;
        let result = {
            let mut iter_b2t = self.stack[range].iter();
            let matcher = |span: &Span<'_>| position.match_string(span.as_str());
            match match_dir {
                MatchDir::BottomToTop => iter_b2t.all(matcher),
                MatchDir::TopToBottom => iter_b2t.rev().all(matcher),
            }
        };
        if result {
            self.position = position;
            Ok(self)
        } else {
            Err(self)
        }
    }

    /// Matches the full state of the stack.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "abba";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state
    ///     .stack_push(|state| state.match_string("a"))
    ///     .and_then(|state| { state.stack_push(|state| state.match_string("b")) })
    ///     .and_then(|state| state.stack_match_peek());
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 4);
    /// ```
    #[inline]
    pub fn stack_match_peek(self: Box<Self>) -> ParseResult<Box<Self>> {
        self.stack_match_peek_slice(0, None, MatchDir::TopToBottom)
    }

    /// Matches the full state of the stack. This method will clear the stack as it evaluates.
    ///
    /// # Examples
    ///
    /// ```
    /// /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "aaaa";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.stack_push(|state| state.match_string("a")).and_then(|state| {
    ///     state.stack_push(|state| state.match_string("a"))
    /// }).and_then(|state| state.stack_match_peek());
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 4);
    /// ```
    #[inline]
    pub fn stack_match_pop(mut self: Box<Self>) -> ParseResult<Box<Self>> {
        let mut position = self.position;
        let mut result = true;
        while let Some(span) = self.stack.pop() {
            result = position.match_string(span.as_str());
            if !result {
                break;
            }
        }

        if result {
            self.position = position;
            Ok(self)
        } else {
            Err(self)
        }
    }

    /// Drops the top of the stack. Returns `Ok(Box<ParserState>)` if there was a value to drop, or
    /// `Err(Box<ParserState>)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "aa";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.stack_push(|state| state.match_string("a")).and_then(
    ///     |state| state.stack_drop()
    /// );
    /// assert!(result.is_ok());
    /// assert_eq!(result.unwrap().position().pos(), 1);
    /// ```
    #[inline]
    pub fn stack_drop(mut self: Box<Self>) -> ParseResult<Box<Self>> {
        match self.stack.pop() {
            Some(_) => Ok(self),
            None => Err(self),
        }
    }

    /// Restores the original state of the `ParserState` when `f` returns an `Err`. Currently,
    /// this method only restores the stack.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest;
    /// # #[allow(non_camel_case_types)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// enum Rule {}
    ///
    /// let input = "ab";
    /// let mut state: Box<pest::ParserState<'_, Rule>> = pest::ParserState::new(input);
    /// let mut result = state.restore_on_err(|state| state.stack_push(|state|
    ///     state.match_string("a")).and_then(|state| state.match_string("a"))
    /// );
    ///
    /// assert!(result.is_err());
    ///
    /// // Since the the rule doesn't match, the "a" pushed to the stack will be removed.
    /// let catch_panic = std::panic::catch_unwind(|| result.unwrap_err().stack_pop());
    /// assert!(catch_panic.is_err());
    /// ```
    #[inline]
    pub fn restore_on_err<F>(self: Box<Self>, f: F) -> ParseResult<Box<Self>>
    where
        F: FnOnce(Box<Self>) -> ParseResult<Box<Self>>,
    {
        match f(self.checkpoint()) {
            Ok(state) => Ok(state.checkpoint_ok()),
            Err(state) => Err(state.restore()),
        }
    }

    // Mark the current state as a checkpoint and return the `Box`.
    #[inline]
    pub(crate) fn checkpoint(mut self: Box<Self>) -> Box<Self> {
        self.stack.snapshot();
        self
    }

    // The checkpoint was cleared successfully
    // so remove it without touching other stack state.
    #[inline]
    pub(crate) fn checkpoint_ok(mut self: Box<Self>) -> Box<Self> {
        self.stack.clear_snapshot();
        self
    }

    // Restore the current state to the most recent checkpoint.
    #[inline]
    pub(crate) fn restore(mut self: Box<Self>) -> Box<Self> {
        self.stack.restore();
        self
    }
}

/// Helper function used only in case stack operations (PUSH/POP) are used in grammar.
fn constrain_idxs(start: i32, end: Option<i32>, len: usize) -> Option<Range<usize>> {
    let start_norm = normalize_index(start, len)?;
    let end_norm = end.map_or(Some(len), |e| normalize_index(e, len))?;
    Some(start_norm..end_norm)
}

/// `constrain_idxs` helper function.
/// Normalizes the index using its sequence’s length.
/// Returns `None` if the normalized index is OOB.
fn normalize_index(i: i32, len: usize) -> Option<usize> {
    if i > len as i32 {
        None
    } else if i >= 0 {
        Some(i as usize)
    } else {
        let real_i = len as i32 + i;
        if real_i >= 0 {
            Some(real_i as usize)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn normalize_index_pos() {
        assert_eq!(normalize_index(4, 6), Some(4));
        assert_eq!(normalize_index(5, 5), Some(5));
        assert_eq!(normalize_index(6, 3), None);
    }

    #[test]
    fn normalize_index_neg() {
        assert_eq!(normalize_index(-4, 6), Some(2));
        assert_eq!(normalize_index(-5, 5), Some(0));
        assert_eq!(normalize_index(-6, 3), None);
    }
}