1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
///
/// [![Docs.rs](https://img.shields.io/badge/docs.rs-perpendicular-66c2a5?style=for-the-badge&labelColor=555555&logoColor=white&logo=)](https://docs.rs/perpendicular)
/// [![Crates.io](https://img.shields.io/crates/v/perpendicular?logo=rust&style=for-the-badge)](https://crates.io/crates/perpendicular)
/// [![Github Workflows](https://img.shields.io/github/workflow/status/jonay2000/perpendicular/label?logo=github&style=for-the-badge)](https://github.com/jonay2000/perpendicular/actions/workflows/ci.yml)
/// Perpendicular is a simple general purpose n-dimensional vector library.
///
/// This is not a general purpose linear algebra library. Instead, it's designed
/// as a tool for simple physics simulations which just need to store some coordinates
/// or velocities together.
///
/// All library documentation can be found on the [`Vector`] struct.
///
/// ```rust
/// use perpendicular::Vector;
///
/// let v1 = Vector::new((1, 2, 3));
/// let v2 = Vector::new((3, 4, 5));
/// let v3 = Vector::new((5, 6, 7));
///
/// println!("{}", v1 + v2 * v3);
///
/// ```
use array_init::from_iter;
use core::fmt;
use core::ops::{Add, Div, Index, IndexMut, Mul, Neg, Rem, Sub};

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use num::traits::Pow;
use std::iter::Sum;

macro_rules! same_length {
    () => {
        "The type system ensures that this value is the right length."
    };
}

#[derive(Debug, PartialEq, Eq, Hash, Copy, Clone)]
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
pub struct Vector<T, const DIM: usize> {
    values: [T; DIM],
}

/// Type alias for 2d vector
pub type Vector2<T> = Vector<T, 2>;
/// Type alias for 3d vector
pub type Vector3<T> = Vector<T, 3>;
/// Type alias for 4d vector
pub type Vector4<T> = Vector<T, 4>;

impl<T> Vector4<T> {
    /// Create a new 4D vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let v = Vector::new4(1, 2, 3, 4);
    ///
    /// assert_eq!(v.dimensions(), 4);
    /// ```
    pub const fn new4(x: T, y: T, z: T, w: T) -> Self {
        Self::new_from_arr([x, y, z, w])
    }
}

impl<T> Vector3<T> {
    /// Create a new 2D vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let v = Vector::new3(1, 2, 3);
    ///
    /// assert_eq!(v.dimensions(), 3);
    /// ```
    pub const fn new3(x: T, y: T, z: T) -> Self {
        Self::new_from_arr([x, y, z])
    }
}

impl<T> Vector2<T> {
    /// Create a new 2D vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let v = Vector::new2(1, 2);
    ///
    /// assert_eq!(v.dimensions(), 2);
    /// ```
    pub const fn new2(x: T, y: T) -> Self {
        Self::new_from_arr([x, y])
    }
}

impl<T, const DIM: usize> Vector<T, DIM> {
    /// Create a new Vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new([1, 2]);
    /// ```
    pub fn new(value: impl Into<Vector<T, DIM>>) -> Self {
        value.into()
    }

    pub fn repeat(value: T) -> Self
    where
        T: Clone,
    {
        Self::try_new(core::iter::repeat(value).take(DIM)).expect(same_length!())
    }

    /// Try to create a vector from the elements provided (in the form of any
    /// type which implements [`IntoIterator`]). Returns None when the number of
    /// items in the iterator do no much the dimension of the desired vector.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// assert_eq!(Vector::try_new(vec![1, 2]), Some(Vector::new2(1, 2)));
    /// assert_eq!(Vector::try_new(vec![1, 2, 3]), Option::<Vector<_, 2>>::None);
    /// assert_eq!(Vector::try_new(vec![1]), Option::<Vector<_, 2>>::None);
    /// ```
    #[cfg(feature = "alloc")]
    pub fn try_new(i: impl IntoIterator<Item = T>) -> Option<Self> {
        let i = i.into_iter();
        match i.size_hint() {
            (lower, _) if lower < DIM => None,
            (_, Some(upper)) if upper > DIM => None,
            (lower, Some(upper)) if lower == upper && lower != DIM => None,
            _ => {
                let collected: Vec<_> = i.collect();
                if collected.len() != DIM {
                    return None;
                }

                Some(Self::new_from_arr(from_iter(collected)?))
            }
        }
    }

    /// Like [`try_new`], but the iterator provided may be longer than the desired
    /// vector (extra elements are consumed).
    /// However, it may not be shorter then the desired vector.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// assert_eq!(Vector::try_new_overflow(vec![1, 2]), Some(Vector::new2(1, 2)));
    /// assert_eq!(Vector::try_new_overflow(vec![1, 2, 3]), Some(Vector::new2(1, 2)));
    /// assert_eq!(Vector::try_new_overflow(vec![1, 2, 3]), Some(Vector::new3(1, 2, 3)));
    /// assert_eq!(Vector::try_new_overflow(vec![1]), Option::<Vector<_, 2>>::None);
    /// ```
    pub fn try_new_overflow(i: impl IntoIterator<Item = T>) -> Option<Self> {
        Some(Self::new_from_arr(from_iter(i.into_iter().take(DIM))?))
    }

    #[doc(hidden)]
    const fn new_from_arr(values: [T; DIM]) -> Self {
        Self { values }
    }

    /// Get the number of dimensions this vector has
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let v = Vector::new([1, 2, 3, 4]);
    ///
    /// assert_eq!(v.dimensions(), 4);
    /// ```
    pub fn dimensions(&self) -> usize {
        DIM
    }

    /// get a reference to the nth item in the vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v = Vector::new2(1, 2);
    /// assert_eq!(v.get(0), Some(&1));
    /// assert_eq!(v.get(1), Some(&2));
    /// assert_eq!(v.get(2), None);
    /// ```
    pub fn get(&self, n: usize) -> Option<&T> {
        self.values.get(n)
    }

    /// get a mutable reference to the nth item in the vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v = Vector::new2(1, 2);
    /// assert_eq!(v.get_mut(0), Some(&mut 1));
    /// assert_eq!(v.get_mut(1), Some(&mut 2));
    /// assert_eq!(v.get_mut(2), None);
    /// ```
    pub fn get_mut(&mut self, n: usize) -> Option<&mut T> {
        self.values.get_mut(n)
    }

    /// Create an iterator over references to items in the vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new2(1, 2);
    /// let mut i = v.iter();
    /// assert_eq!(i.next(), Some(&1));
    /// assert_eq!(i.next(), Some(&2));
    /// assert_eq!(i.next(), None);
    /// ```
    pub fn iter(&self) -> impl Iterator<Item = &T> {
        self.values.iter()
    }

    /// Create an iterator over mutable references to items in the vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v = Vector::new2(1, 2);
    /// let mut i = v.iter_mut();
    /// assert_eq!(i.next(), Some(&mut 1));
    /// assert_eq!(i.next(), Some(&mut 2));
    /// assert_eq!(i.next(), None);
    /// ```
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v = Vector::new2(1, 2);
    /// {
    ///     let mut i = v.iter_mut();
    ///     *i.next().unwrap() = 4;
    /// }
    /// assert_eq!(v.get(0), Some(&4))
    /// ```
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
        self.values.iter_mut()
    }

    /// Scale a vector by a scalar, multiplying each element
    /// by n.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new([1, 2, 3]);
    ///
    /// assert_eq!(v.scale(2), Vector::new([2, 4, 6]));
    /// assert_eq!(v.scale(3), Vector::new([3, 6, 9]));
    ///
    /// ```
    pub fn scale<'a, U>(&'a self, n: U) -> Vector<<&'a T as Mul<U>>::Output, DIM>
    where
        &'a T: Mul<U>,
        U: Clone,
    {
        Vector::new_from_arr(from_iter(self.iter().map(|x| x * n.clone())).expect(same_length!()))
    }

    /// Unscale a vector by a scalar. This divides every element by n.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new([4, 8, 16]);
    ///
    /// assert_eq!(v.unscale(2), Vector::new([2, 4, 8]));
    /// assert_eq!(v.unscale(4), Vector::new([1, 2, 4]));
    ///
    /// ```
    pub fn unscale<'a, U>(&'a self, other: U) -> Vector<<&'a T as Div<U>>::Output, DIM>
    where
        &'a T: Div<U>,
        U: Clone,
    {
        Vector::new_from_arr(
            from_iter(self.iter().map(|x| x / other.clone())).expect(same_length!()),
        )
    }

    /// Create a vector filled with the zero value of T (according to num)
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new((0, 0, 0));
    /// assert_eq!(Vector::zero(), v);
    /// ```
    pub fn zero() -> Self where T: num::Num + Clone {
        Self::repeat(T::zero())
    }

    /// Create a vector filled with the one value of T (according to num)
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v = Vector::new((1, 1, 1));
    /// assert_eq!(Vector::one(), v);
    /// ```
    pub fn one() -> Self where T: num::Num + Clone {
        Self::repeat(T::one())
    }
}

impl<T, const DIM: usize> Vector<T, DIM>
where
    T: Into<f64>,
{
    /// Calculate the magnitude of this vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v = Vector::new2(3, 4);
    ///
    /// assert_eq!(v.magnitude(), 5.0)
    /// ```
    pub fn magnitude(&self) -> f64
    where
        T: Clone,
    {
        self.iter()
            .map(|i: &T| {
                let f: f64 = i.clone().into();
                f.pow(2)
            })
            .sum::<f64>()
            .sqrt()
    }

    /// Create a new vector with the same direction but another magnitude
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let mut v = Vector::new2(3, 4);
    ///
    /// assert_eq!(v.with_magnitude(10), Vector::new((6.0, 8.0)))
    /// ```
    pub fn with_magnitude(&self, magnitude: impl Into<f64>) -> Vector<f64, DIM>
    where
        T: Clone + Into<f64>,
    {
        (self.map(|i| -> f64 { i.clone().into() }) / Vector::<_, DIM>::repeat(self.magnitude()))
            .scale(magnitude.into())
    }

    /// Normalizes the vector. Sets the magnitude to 1.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    /// let mut v = Vector::new2(3, 4);
    ///
    /// assert_eq!(v.normalize(), Vector::new((3.0/5.0, 4.0/5.0)))
    /// ```
    pub fn normalize(&self) -> Vector<f64, DIM>
    where
        T: Clone + Into<f64>,
    {
        self.with_magnitude(1)
    }

    /// Limit the magnitude of a vector. If the magnitude is less than the limit
    /// nothing changes (except all values are cast to floats). If the magnitude
    /// is larger than the limit, the magnitude is set to this limit.
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// assert_eq!(Vector::new2(3, 4).limit(10), Vector::new((3.0, 4.0)));
    /// assert_eq!(Vector::new2(9, 12).limit(10), Vector::new((6.0, 8.0)));
    /// ```
    pub fn limit(&self, limit: impl Into<f64>) -> Vector<f64, DIM>
    where
        T: Clone + Into<f64>,
    {
        let limit = limit.into();
        if self.magnitude() > limit {
            self.with_magnitude(limit)
        } else {
            self.map(|i| i.clone().into())
        }
    }

    /// Calculates the angle between two vectors (in radians)
    ///
    /// ```
    /// # use perpendicular::Vector;
    ///
    /// let mut v1 = Vector::new2(0, 1);
    /// let mut v2 = Vector::new2(1, 0);
    ///
    /// assert_eq!(v1.angle(&v2).to_degrees(), 90.0)
    /// ```
    pub fn angle<O>(&self, other: &Vector<O, DIM>) -> f64
    where
        T: Mul<O> + Clone,
        <T as Mul<O>>::Output: Sum + Into<f64>,
        O: Clone + Into<f64>,
    {
        let a: f64 = self.dot(other).into() / (self.magnitude() * other.magnitude());
        a.acos()
    }

    /// Calculate the distance from this vector to another vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let mut v1 = Vector::new2(0, 0);
    /// let mut v2 = Vector::new2(3, 4);
    ///
    /// assert_eq!(v1.distance(&v2), 5.0)
    /// ```
    pub fn distance<O>(&self, other: &Vector<O, DIM>) -> f64
    where
        for<'a> Self: Sub<&'a Vector<O, DIM>>,
        O: Into<f64> + Clone,
        T: Clone,
    {
        (self.map(|i| i.clone().into()) - other.map(|i| i.clone().into())).magnitude()
    }

    /// Calculate the dot product of this vector
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v1 = Vector::new((1, 2));
    /// let v2 = Vector::new((&2, &1));
    ///
    /// assert_eq!(v1.dot(&v2), 4)
    ///
    /// ```
    pub fn dot<O>(&self, other: &Vector<O, DIM>) -> <T as Mul<O>>::Output
    where
        T: Mul<O>,
        for<'a, 'b> &'a Self: Mul<&'b Vector<O, DIM>, Output = Vector<<T as Mul<O>>::Output, DIM>>,
        <T as Mul<O>>::Output: Sum<<T as Mul<O>>::Output>,
    {
        (self * other).into_iter().sum()
    }

    /// Find if the angle between two vectors is 90 degrees
    ///
    /// ```rust
    /// # use perpendicular::Vector;
    ///
    /// let v1 = Vector::new((0, 1));
    /// let v2 = Vector::new((1, 0));
    /// let v3 = Vector::new((1, 1));
    ///
    /// assert!(v1.perpendicular(&v2));
    /// assert!(!v1.perpendicular(&v3));
    ///
    /// ```
    pub fn perpendicular<O>(&self, other: &Vector<O, DIM>) -> bool
    where
        T: Mul<O>,
        for<'a, 'b> &'a Self: Mul<&'b Vector<O, DIM>, Output = Vector<<T as Mul<O>>::Output, DIM>>,
        <T as Mul<O>>::Output: Sum<<T as Mul<O>>::Output>,
        <T as Mul<O>>::Output: num::Num,
    {
        self.dot(other) == num::zero()
    }
}

/// Trait to allow for mapping Vector *and* &Vector
pub trait MapVector<T, const DIM: usize> {
    /// Map an operation over every element of the vector
    ///
    /// ```rust
    /// # use crate::perpendicular::Vector;
    /// use perpendicular::MapVector;
    /// let v = Vector::new((1, 2, 3, 4));
    /// assert_eq!(v.clone().map(|i| i * 3), Vector::new((3, 6, 9, 12)));
    /// assert_eq!(v.clone().map(|i| -i), Vector::new((-1, -2, -3, -4)));
    /// ```
    fn map<U, F: FnMut(T) -> U>(self, func: F) -> Vector<U, DIM>;
}

impl<'a, T, const DIM: usize> MapVector<&'a T, DIM> for &'a Vector<T, DIM> {
    fn map<U, F: FnMut(&'a T) -> U>(self, func: F) -> Vector<U, DIM> {
        Vector::try_new(self.into_iter().map(func)).expect(same_length!())
    }
}

impl<T, const DIM: usize> MapVector<T, DIM> for Vector<T, DIM> {
    fn map<U, F: FnMut(T) -> U>(self, func: F) -> Vector<U, DIM> {
        Vector::try_new(self.into_iter().map(func)).expect(same_length!())
    }
}

impl<T: fmt::Display, const DIM: usize> fmt::Display for Vector<T, DIM> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "vec{}(", self.dimensions())?;

        let mut iter = self.iter();
        if let Some(i) = iter.next() {
            write!(f, "{}", i)?;
        }
        for i in iter {
            write!(f, ", {}", i)?;
        }
        write!(f, ")")?;

        Ok(())
    }
}

impl<T, const DIM: usize> Index<usize> for Vector<T, DIM> {
    type Output = T;

    fn index(&self, index: usize) -> &Self::Output {
        &self.values[index]
    }
}

impl<T, const DIM: usize> IndexMut<usize> for Vector<T, DIM> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.values[index]
    }
}

impl<T, const DIM: usize> IntoIterator for Vector<T, DIM> {
    type Item = T;
    type IntoIter = std::array::IntoIter<T, DIM>;

    fn into_iter(self) -> Self::IntoIter {
        std::array::IntoIter::new(self.values)
    }
}

impl<'a, T, const DIM: usize> IntoIterator for &'a Vector<T, DIM> {
    type Item = &'a T;
    type IntoIter = std::slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.values.iter()
    }
}

impl<T, const N: usize> From<[T; N]> for Vector<T, N> {
    fn from(arr: [T; N]) -> Self {
        Self::new_from_arr(arr)
    }
}

macro_rules! length {
    ($_: tt $($rest: tt)*) => {
        1usize + length!($($rest)*)
    };
    () => {
        0usize
    };
}

macro_rules! replace_ident {
    ($i:ident => $($j:tt)*) => ($($j)*)
}

macro_rules! from_tuple {
    ($first: tt $($rest: tt)*) => {
        impl<T> From<(T, $(replace_ident!($rest => T)),*)> for Vector<T, {length!($($rest)*)+1}> {
            #[allow(non_snake_case)]
            fn from(($first, $($rest),*): (T, $(replace_ident!($rest => T)),*)) -> Self {
                Self::new_from_arr([$first, $($rest),*])
            }
        }
        from_tuple!($($rest)*);
    };
    () => {}
}

from_tuple!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF );

macro_rules! names {
    ($($letters: ident),*;$($rest: tt),*) => {
        names!(; $($letters)*; $($rest)*);
    };

    ($($had: ident $had_length: tt)*; $letter: ident $($letters: ident)*; $($rest: tt)*) => {
        impl<T> Vector<T, {length!($($had)*)+1}> {
            $(
                #[allow(unused)]
                fn $had(&self) -> &T {
                    self.get($had_length).expect(same_length!())
                }
                concat_idents::concat_idents!(fn_name = $had, _mut {
                    #[allow(unused)]
                    fn fn_name(&mut self) -> &mut T {
                        self.get_mut($had_length).expect(same_length!())
                    }
                });
            )*

            #[allow(unused)]
            fn $letter(&self) -> &T {
                self.get(length!($($had)*)).expect(same_length!())
            }
            concat_idents::concat_idents!(fn_name = $letter, _mut {
                #[allow(unused)]
                fn fn_name(&mut self) -> &mut T {
                    self.get_mut(length!($($had)*)).expect(same_length!())
                }
            });
        }

        names!($($had $had_length)* $letter {length!($($had)*)}; $($letters)*; $($rest)*);
    };

    ($($had: ident $had_length: tt)*;; $r: tt $($rest: tt)*) => {
        impl<T> Vector<T, {length!($($had)*)+1 + length!($($rest)*)}> {
            $(
                #[allow(unused)]
                fn $had(&self) -> &T {
                    self.get($had_length).expect(same_length!())
                }
                concat_idents::concat_idents!(fn_name = $had, _mut {
                    #[allow(unused)]
                    fn fn_name(&mut self) -> &mut T {
                        self.get_mut($had_length).expect(same_length!())
                    }
                });
            )*
        }
        names!($($had $had_length)*;; $($rest)*);
    };
    ($($had: ident $had_length: tt)*;;) => {}
}

names!(x, y, z, w; _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _);
names!(a, b, c, d; _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _);
names!(m, n; _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _);

macro_rules! impl_bin_op {
    ($op: tt, $trait: ident, $method: ident) => {
        impl<T: $trait<T>, const DIM: usize> $trait<Vector<T, DIM>> for Vector<T, DIM> {
            type Output = Vector<<T as $trait<T>>::Output, DIM>;
            fn $method(self, rhs: Self) -> Self::Output {
                let self_iter = std::array::IntoIter::new(self.values);
                let other_iter = std::array::IntoIter::new(rhs.values);
                Vector::new_from_arr(
                    from_iter(
                        self_iter.zip(other_iter)
                            .map(|(x, y)| {x $op y})
                    ).expect(same_length!())
                )
            }
        }

        // TODO: remove clone bound
        impl<T: $trait<T> + Clone, const DIM: usize> $trait<&Vector<T, DIM>> for Vector<T, DIM> {
            type Output = Vector<<T as $trait<T>>::Output, DIM>;

            fn $method(self, rhs: &Self) -> Self::Output {
                let self_iter = std::array::IntoIter::new(self.values);
                let other_iter = rhs.values.iter();
                Vector::new_from_arr(
                    from_iter(
                        self_iter.zip(other_iter)
                            .map(|(x, y)| {x $op y.clone()})
                    ).expect(same_length!())
                )
            }
        }

        // TODO: remove clone bound
        impl<U: Clone, T: $trait<U> + Clone, const DIM: usize> $trait<Vector<U, DIM>> for &Vector<T, DIM> {
            type Output = Vector<<T as $trait<U>>::Output, DIM>;

            fn $method(self, rhs: Vector<U, DIM>) -> Self::Output {
                let self_iter = self.values.iter();
                let other_iter = std::array::IntoIter::new(rhs.values);
                Vector::new_from_arr(
                    from_iter(
                        self_iter.zip(other_iter)
                            .map(|(x, y)| {x.clone() $op y})
                    ).expect(same_length!())
                )
            }
        }

        impl<'a, 'b, U: Clone, T: $trait<U> + Clone, const DIM: usize> $trait<&'a Vector<U, DIM>> for &'b Vector<T, DIM> {
            type Output = Vector<<T as $trait<U>>::Output, DIM>;

            fn $method(self, rhs: &'a Vector<U, DIM>) -> Self::Output {
                let self_iter = self.values.iter();
                let other_iter = rhs.values.iter();
                Vector::new_from_arr(
                    from_iter(
                        self_iter.zip(other_iter)
                            .map(|(x, y)| {x.clone() $op y.clone()})
                    ).expect(same_length!())
                )
            }
        }
    };
}

impl_bin_op!(+, Add, add);
impl_bin_op!(-, Sub, sub);
impl_bin_op!(*, Mul, mul);
impl_bin_op!(/, Div, div);
impl_bin_op!(%, Rem, rem);

impl<T: Neg, const DIM: usize> Neg for Vector<T, DIM> {
    type Output = Vector<<T as Neg>::Output, DIM>;

    fn neg(self) -> Self::Output {
        let self_iter = std::array::IntoIter::new(self.values);
        Vector::try_new_overflow(self_iter.map(|i| -i)).expect(same_length!())
    }
}

impl<'a, T, const DIM: usize> Neg for &'a Vector<T, DIM>
where
    &'a T: Neg,
{
    type Output = Vector<<&'a T as Neg>::Output, DIM>;

    fn neg(self) -> Self::Output {
        Vector::try_new_overflow(self.values.iter().map(|i| -i)).expect(same_length!())
    }
}

#[cfg(test)]
mod tests {
    use crate::Vector;

    #[test]
    pub fn test_letters() {
        assert_eq!(Vector::new([1]).x(), &1);
        assert_eq!(Vector::new([1, 2]).x(), &1);
        assert_eq!(Vector::new([1, 2, 3]).x(), &1);
        assert_eq!(Vector::new([1, 2, 3, 4]).x(), &1);

        assert_eq!(Vector::new([1, 2]).y(), &2);
        assert_eq!(Vector::new([1, 2, 3]).y(), &2);
        assert_eq!(Vector::new([1, 2, 3, 4]).y(), &2);

        assert_eq!(Vector::new([1, 2, 3]).z(), &3);
        assert_eq!(Vector::new([1, 2, 3, 4]).z(), &3);

        assert_eq!(Vector::new([1, 2, 3, 4]).w(), &4);

        assert_eq!(Vector::new([1, 2, 3, 4, 5]).x(), &1);
        assert_eq!(Vector::new([1, 2, 3, 4, 5]).y(), &2);
        assert_eq!(Vector::new([1, 2, 3, 4, 5]).z(), &3);
        assert_eq!(Vector::new([1, 2, 3, 4, 5]).w(), &4);

        assert_eq!(Vector::new([1, 2, 3, 4, 5, 6]).x(), &1);
        assert_eq!(Vector::new([1, 2, 3, 4, 5, 6]).y(), &2);
        assert_eq!(Vector::new([1, 2, 3, 4, 5, 6]).z(), &3);
        assert_eq!(Vector::new([1, 2, 3, 4, 5, 6]).w(), &4);
    }

    #[test]
    pub fn test_ops() {
        let a = Vector::new2(1, 2);
        let b = Vector::new2(3, 4);
        assert_eq!(a + b, Vector::new2(4, 6));
        assert_eq!(a + &b, Vector::new2(4, 6));
        assert_eq!(&a + b, Vector::new2(4, 6));
        assert_eq!(&a + &b, Vector::new2(4, 6));

        assert_eq!(a - b, Vector::new2(-2, -2));
        assert_eq!(a - &b, Vector::new2(-2, -2));
        assert_eq!(&a - b, Vector::new2(-2, -2));
        assert_eq!(&a - &b, Vector::new2(-2, -2));

        assert_eq!(a * b, Vector::new2(3, 8));
        assert_eq!(a * &b, Vector::new2(3, 8));
        assert_eq!(&a * b, Vector::new2(3, 8));
        assert_eq!(&a * &b, Vector::new2(3, 8));

        assert_eq!(a / b, Vector::new2(0, 0));
        assert_eq!(a / &b, Vector::new2(0, 0));
        assert_eq!(&a / b, Vector::new2(0, 0));
        assert_eq!(&a / &b, Vector::new2(0, 0));
    }

    #[test]
    pub fn test_from_tuple() {
        let v: Vector<_, 1> = (1,).into();
        assert_eq!(v.x(), &1);
        let v = Vector::new((1,));
        assert_eq!(v.x(), &1);
        let v = Vector::new((1, 2, 3, 4));
        assert_eq!(v.z(), &3);
    }

    #[test]
    pub fn test_index() {
        let v = Vector::new((1, 2, 3, 4));
        assert_eq!(v[0], 1);
        assert_eq!(v[1], 2);
        assert_eq!(v[2], 3);
        assert_eq!(v[3], 4);
    }

    #[test]
    pub fn test_display() {
        let v = Vector::new((1, 2, 3, 4));
        assert_eq!(format!("{}", v), "vec4(1, 2, 3, 4)");

        let v = Vector::new((1, 2));
        assert_eq!(format!("{}", v), "vec2(1, 2)");

        let v = Vector::new((1,));
        assert_eq!(format!("{}", v), "vec1(1)");
    }

    #[test]
    #[should_panic]
    pub fn test_index_out_of_bounds() {
        let v = Vector::new((1, 2, 3, 4));
        v[4];
    }
}