Problem Set 2, Part 1
21. Sept, 2016
Problem 1

a)

n*n

b)

For one processor, the number of grid elements to be sent is: 2 % +2x 2

So my answer is g x 7 * 2n(% + 1) =2n(g+r).

c)

Vertical: We can do all vertical communication in two batches, where 2 and 2

processes transfer 2 % bytes. So in seconds,this is (2 * %" * % sec) x 2+ 2s.

For horizontal connections, it’s the same but with r instead q.
My answer is thus 4s + 442(1/q + 1/r).

d)
There are 3 cases: 2x32, 4x16 and 8x8.

2x32
4s+ 2dn(1/2 4+ 1/32)

4x16
4s+ n(1/4 +1/16)

8x8
4s+ 2m(1/8 +1/8)

We can see that the expression is minimal when q=8 and r=8.

Problem 2
a)

The run-times are given in Pacheco on page 135. Given these, the speedups are
(given by time_parallel /time_serial):

Processes 200k 800k 3200k
2 2.0465 | 2.0526 2.093
4 4 4.0625 | 4.1860
8 7.3333 | 7.6470 | 8.1818
16 11.7333 | 13.4482 | 13.8431

And the efficiencies are (given by speedup/num_processes):

Processes 200k 800k 3200k
2 1.02325 | 1.0263 | 1.0465
4 1 1.0156 | 1.0465
8 0.9166 | 0.9558 | 1.0227
16 0.7333 | 0.8405 | 0.8651

b)

The program doesn’t obtain linear speedups - this can be seen in the case of 16
processors: the efficiency is well below 1.

c)
Strongly scalable: constant efficiency when we only increase number of processes

with constant problem size.
No.

d)

Weakly scalable: we can keep efficiency constant when we increase the problem
size at the same rate as we increase the number of processes. Not quite so. The
efficiency with 2 processes and 200k elements is 1.02325, and the efficiency with
8 processes and 800k elements is 0.9558.

Problem 3

1. Processes don’t share memory. Threads do share memory.
2. Threads are much more light weight to create - much less overhead.

Problem 4

For every iteration, the processes have to wait for each other to execute the
critical section. The critical section is in effect a serial part of the code. Once

we move the critical section out of the loop, the loop will execute much faster
and in true parallel - independent of other threads. The serial part is minimized
to be proportional to the number of threads rather than to the problem size.

Problem 5
a)

A race condition happens when some output is dependent on the order in which
events happen, when the programmer cannot control this ordering. For example,
if two threads repeatedly add some value to a global sum, when they add a value
at more or less the same time, it becomes a matter of fate what happens next.
This is because in machine code, the threads first make a local (to the CPU)
copy of the global sum, add their value, then write it back. It’s not atomic.

b)

A critical section is a section of code that can only (for correct results) be
executed by one thread at a time. For example due to race conditions.

c)

Busy-waiting

Round-robin style. Threads take turns entering the critical section, strictly in
order.

Pros

e Works, easy to implement.

e Enforces ordering, which can be critical in some applications.

Cons
e Continually uses CPU - wasting power and computing time.

e If there are more threads than cores, a thread whose turn it is, may be
blocked.

e If we don’t need ordering, it’s wasteful that threads wait for their turn -
in case some are done earlier than others but are later in the queue.
Mutex locks

Before the critical section is a funtion call to lock the mutex. But once a thread
has locked it, all other threads calling this funtion will be blocked until the
mutex is unlocked.

Pros
e Doesn’t enforce ordering, in the case that we don’t need it.

e With more threads than cores, the performance doesn’t degrade in the
same way as when using busy-waiting - it doesn’t depend on blocked
threads.

Cons

e Doesn’t enforce ordering, in the case that we need that.

Semaphores

A semaphore is a generalization of mutexes. It can be thought of as an unsigned
int. When it’s 0, a call to sem_wait will block. Else, calls to sem_wait will
decrement the integer. sem_post increments the integer, effectively allowing
someone to ”consume” (sem_wait).

Pros

e More flexibility: we can do more - e.g. the number of processes in a critical
section can be limited by

e And especially works well for ”producer-consumer synchronization”, in
which there is no critical section, but the ”consumer” thread just has to
wait for the ”producer” thread.

Cons

e Don’t know.

