1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//! This module exposes three fundamental concepts:
//!
//! [PbBufferReader]
//! A [PbBufferReader] is something which a [Message] can be deserialized from. In the common case,
//! this means that the relevant bytes are copied out of the underlying store and copied into an
//! appropriate struct which implements [Message]. The underlying data store is referred to as a
//! [PbBuffer].
//!
//! [PbBufferWriter]
//! A [PbBufferWriter] is something which a [Message] can be serialized to. In the common case, this
//! means that the relevant bytes are copied out of the concrete struct and into the underlying
//! data store. The underlying data store is referred to as a [PbBuffer].
//!
//! [Lazy]
//! The interesting trick of the [PbBuffer]/[PbBufferReader]/[PbBufferWriter] abstraction is that there are
//! cases where we want to minimize the number of times we copy the data contained within a message
//! (or field of a message). Especially on resource-constrained hardware (mostly MP OSDs), we want
//! to be able to avoid the cost of serialization and deserialization.
//!
//! To support this, a [PbBufferReader] and a [PbBufferWriter] may use *compatible* backing stores, and
//! expose a [Lazy] message type which represents the not-yet-deserialized data. The flow is
//! roughly as follows:
//!
//! Request (bytes on the wire)
//!     |
//!     v
//! RPC Framework (with an underlying allocator, e.g. blob::Blob or grpc::Slice)
//!     |
//!     v
//! BR: PbBufferReader deserializes the struct using RPC framework's allocator.
//!     |
//!     v
//! Request (concrete struct containing a [Lazy] field)
//!     |
//!     v
//! RPC handler (doesn't modify the [Lazy] field)
//!     |
//!     v
//! Response (concrete struct containing a [Lazy] field)
//!     |
//!     v
//! BW: PbBufferWriter serializes the struct using RPC framework's allocator.
//!     |
//!     v
//! RPC Framework (with an underlying allocator, e.g. blob::Blob or grpc::Slice)
//!     |
//!     v
//! Response (bytes on the wire).
//!
//! In order for [Lazy] to work (i.e. minimize copies), we must have the [PbBufferReader] and the
//! [PbBufferWriter] use compatible underlying allocators. Compatibility is defined by the
//! both of the following:
//! - the ability for the [PbBufferWriter] to successfully call `write_buffer` for the appropriate
//! [PbBuffer] type, which writes non-deserialized data back into the data store.
//! - the ability to use [PbBuffer::into_reader] and [PbBufferReader::as_buffer] to *convert* between
//! underlying data stores.
//!
//! Roughly speaking, [Lazy] converts to the appropriate [PbBuffer] type when `deserialize` is
//! called, and then lazily writes itself when `serialize` is called.
//!
//! In the status quo, the behavior is as follows:
//!
//! `blob_pb::WrappedBlob` and `blob_pb::VecSlice` allow zero-copy deserialization -> serialization,
//! provided that their respective [PbBufferWriter]s are used.
//! Converting from `blob_pb::WrappedBlob` to a `blob_pb::VecSlice` is zero-copy.
//! Converting from a `blob_pb::VecSlice` to a `blob_pb::Blob` requires a single copy.

use std::any::{
    type_name,
    Any,
};
use std::default::Default;
use std::fmt::{
    self,
    Debug,
};
use std::io::{
    Cursor,
    Error,
    ErrorKind,
    Result,
    Write,
};

use bytes::{
    Buf,
    Bytes,
};

use super::Message;

/// A stand-in trait for any backing buffer store. Required to be object-safe for lazy evaluation.
/// PbBuffers are expected to own references to the data they reference, and should be cheap
/// (constant-time) to clone.
#[allow(clippy::len_without_is_empty)]
pub trait PbBuffer: Any + Clone + Default {
    type Reader: PbBufferReader;
    fn len(&self) -> usize;
    fn into_reader(self) -> Self::Reader;

    /// Deserialize this buffer from a reader. Unless overridden, this will error
    /// if the reader does not support casting to [Self].
    fn from_reader<R: PbBufferReader>(reader: &mut R) -> Result<Self> {
        reader.as_buffer::<Self>()
    }
}

/// If `B1` and `B2` are the same type, returns the passed-in buffer;
/// otherwise, returns an error.
pub fn cast_buffer<B1: PbBuffer, B2: PbBuffer>(buf: B1) -> Result<B2> {
    let mut buf = Some(buf);
    if let Some(buf) = (&mut buf as &mut dyn Any).downcast_mut::<Option<B2>>() {
        Ok(buf.take().unwrap())
    } else {
        Err(Error::new(
            ErrorKind::InvalidInput,
            format!(
                "This reader produces buffers of type {}, not {}",
                type_name::<B1>(),
                type_name::<B2>()
            ),
        ))
    }
}

/// All concrete types which are used for deserialization should implement
/// [PbBufferReader], which includes functions to convert to and from [PbBuffer].
pub trait PbBufferReader: Buf + Sized {
    /// Get a reference to the underlying [PbBuffer]. This is expected to be cheap,
    /// if supported, or return error.
    /// The implementation should dispatch on the type `B` and return an error
    /// if the requested buffer type is unknown.
    fn as_buffer<B: PbBuffer>(&self) -> Result<B> {
        Err(Error::new(
            ErrorKind::InvalidInput,
            "Taking ownership of the PbBuffer from this reader is not supported",
        ))
    }

    /// Advance the interal cursor by `at`, and return a [PbBufferReader] corresponding to the
    /// traversed indices (i.e. self.position..self.position + at).
    fn split(&mut self, at: usize) -> Self;
}

/// All concrete types used for serialization should implement [PbBufferWriter] in order to support
/// serializing lazily-evaluated types without copies.
pub trait PbBufferWriter: Write {
    /// Attempt to write a lazily-evaluated buffer into [Self]. If the underlying [B] is not
    /// zero-copy-supported by the [PbBufferWriter], this should read/copy the bytes out from [B].
    fn write_buffer<B: PbBuffer>(&mut self, buf: &B) -> Result<()>;
}

/// A wrapper around a lazily-evaluted [PbBufferReader] which implements [Message].
#[derive(Clone, Default, PartialEq)]
pub struct Lazy<B: PbBuffer> {
    contents: Option<B>,
}

impl<B: PbBuffer> Lazy<B> {
    pub fn new(r: B) -> Self {
        Self { contents: Some(r) }
    }

    pub fn into_buffer(self) -> B {
        self.contents.unwrap_or_default()
    }
}

impl<B: PbBuffer> Debug for Lazy<B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Lazy")
            .field("contents", &self.contents.as_ref().map(|_| "_"))
            .finish()
    }
}

impl<B: PbBuffer + PartialEq> Message for Lazy<B> {
    fn compute_size(&self) -> usize {
        self.contents.as_ref().map(PbBuffer::len).unwrap_or(0)
    }

    fn compute_grpc_slices_size(&self) -> usize {
        self.contents.as_ref().map(PbBuffer::len).unwrap_or(0)
    }

    fn serialize<W: PbBufferWriter>(&self, w: &mut W) -> Result<()> {
        if let Some(ref contents) = self.contents {
            w.write_buffer(contents)?;
        }
        Ok(())
    }

    fn deserialize<R: PbBufferReader>(&mut self, r: &mut R) -> Result<()> {
        self.contents = Some(B::from_reader(r)?);
        Ok(())
    }
}

impl<'a> PbBufferReader for Cursor<&'a [u8]> {
    fn split(&mut self, at: usize) -> Self {
        let pos = self.position() as usize;
        self.advance(at);
        let new_slice = &self.get_ref()[pos..pos + at];
        Self::new(new_slice)
    }
}

impl PbBuffer for Bytes {
    type Reader = Cursor<Bytes>;
    fn len(&self) -> usize {
        self.len()
    }
    fn into_reader(self) -> Cursor<Bytes> {
        Cursor::new(self)
    }
}

impl PbBufferReader for Cursor<Bytes> {
    fn as_buffer<B: PbBuffer>(&self) -> Result<B> {
        let bytes = self.get_ref().slice((self.position() as usize)..);
        cast_buffer(bytes)
    }

    fn split(&mut self, at: usize) -> Self {
        let pos = self.position() as usize;
        self.advance(at);
        let new_slice = self.get_ref().slice(pos..(pos + at));
        Self::new(new_slice)
    }
}

impl<'a> PbBufferWriter for Cursor<&'a mut Vec<u8>> {
    /// Note: this implementation freely copies the data out of `buf`.
    #[inline]
    fn write_buffer<B: PbBuffer>(&mut self, buf: &B) -> Result<()> {
        let mut reader = buf.clone().into_reader();
        while reader.has_remaining() {
            let n = {
                let bytes = reader.chunk();
                self.write_all(bytes)?;
                bytes.len()
            };
            reader.advance(n);
        }
        Ok(())
    }
}

impl<'a> PbBufferWriter for Cursor<&'a mut [u8]> {
    /// Note: this implementation freely copies the data out of `buf`.
    #[inline]
    fn write_buffer<B: PbBuffer>(&mut self, buf: &B) -> Result<()> {
        let mut reader = buf.clone().into_reader();
        while reader.has_remaining() {
            let n = {
                let bytes = reader.chunk();
                self.write_all(bytes)?;
                bytes.len()
            };
            reader.advance(n);
        }
        Ok(())
    }
}

/// A wrapper around a [Write] which copies all the data into the underlying [Write]r.
pub struct CopyWriter<'a, W: Write> {
    pub writer: &'a mut W,
}

impl<'a, W: Write + 'a> Write for CopyWriter<'a, W> {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.writer.write(buf)
    }

    #[inline]
    fn flush(&mut self) -> Result<()> {
        self.writer.flush()
    }
}

impl<'a, W: Write + 'a> PbBufferWriter for CopyWriter<'a, W> {
    /// Note: this implementation freely copies the data out of `buf`.
    #[inline]
    fn write_buffer<B: PbBuffer>(&mut self, buf: &B) -> Result<()> {
        let mut reader = buf.clone().into_reader();
        while reader.has_remaining() {
            let n = {
                let bytes = reader.chunk();
                self.write_all(bytes)?;
                bytes.len()
            };
            reader.advance(n);
        }
        Ok(())
    }
}