1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// pathfinder/geometry/src/basic/point.rs
//
// Copyright © 2019 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A SIMD-optimized point type.

use pathfinder_simd::default::{F32x2, F32x4, I32x2};
use std::ops::{Add, AddAssign, Mul, Neg, Sub};

/// 2D points with 32-bit floating point coordinates.
#[derive(Clone, Copy, Debug, Default)]
pub struct Vector2F(pub F32x2);

impl Vector2F {
    #[inline]
    pub fn new(x: f32, y: f32) -> Vector2F {
        Vector2F(F32x2::new(x, y))
    }

    #[inline]
    pub fn splat(value: f32) -> Vector2F {
        Vector2F(F32x2::splat(value))
    }

    #[inline]
    pub fn to_3d(self) -> Vector4F {
        Vector4F(self.0.to_f32x4().concat_xy_zw(F32x4::new(0.0, 0.0, 0.0, 1.0)))
    }

    #[inline]
    pub fn x(self) -> f32 {
        self.0[0]
    }

    #[inline]
    pub fn y(self) -> f32 {
        self.0[1]
    }

    #[inline]
    pub fn set_x(&mut self, x: f32) {
        self.0[0] = x;
    }

    #[inline]
    pub fn set_y(&mut self, y: f32) {
        self.0[1] = y;
    }

    #[inline]
    pub fn min(self, other: Vector2F) -> Vector2F {
        Vector2F(self.0.min(other.0))
    }

    #[inline]
    pub fn max(self, other: Vector2F) -> Vector2F {
        Vector2F(self.0.max(other.0))
    }

    #[inline]
    pub fn clamp(self, min_val: Vector2F, max_val: Vector2F) -> Vector2F {
        self.max(min_val).min(max_val)
    }

    #[inline]
    pub fn det(self, other: Vector2F) -> f32 {
        self.x() * other.y() - self.y() * other.x()
    }

    #[inline]
    pub fn dot(self, other: Vector2F) -> f32 {
        let xy = self.0 * other.0;
        xy.x() + xy.y()
    }

    #[inline]
    pub fn scale(self, x: f32) -> Vector2F {
        Vector2F(self.0 * F32x2::splat(x))
    }

    #[inline]
    pub fn scale_xy(self, factors: Vector2F) -> Vector2F {
        Vector2F(self.0 * factors.0)
    }

    #[inline]
    pub fn floor(self) -> Vector2F {
        Vector2F(self.0.floor())
    }

    #[inline]
    pub fn ceil(self) -> Vector2F {
        Vector2F(self.0.ceil())
    }

    /// Treats this point as a vector and calculates its squared length.
    #[inline]
    pub fn square_length(self) -> f32 {
        let squared = self.0 * self.0;
        squared[0] + squared[1]
    }

    /// Treats this point as a vector and calculates its length.
    #[inline]
    pub fn length(self) -> f32 {
        f32::sqrt(self.square_length())
    }

    /// Treats this point as a vector and normalizes it.
    #[inline]
    pub fn normalize(self) -> Vector2F {
        self.scale(1.0 / self.length())
    }

    /// Swaps y and x.
    #[inline]
    pub fn yx(self) -> Vector2F {
        Vector2F(self.0.yx())
    }

    #[inline]
    pub fn is_zero(self) -> bool {
        self == Vector2F::default()
    }

    #[inline]
    pub fn lerp(self, other: Vector2F, t: f32) -> Vector2F {
        self + (other - self).scale(t)
    }

    #[inline]
    pub fn to_i32(self) -> Vector2I {
        Vector2I(self.0.to_i32x2())
    }
}

impl PartialEq for Vector2F {
    #[inline]
    fn eq(&self, other: &Vector2F) -> bool {
        self.0.packed_eq(other.0).is_all_ones()
    }
}

impl Add<Vector2F> for Vector2F {
    type Output = Vector2F;
    #[inline]
    fn add(self, other: Vector2F) -> Vector2F {
        Vector2F(self.0 + other.0)
    }
}

impl Sub<Vector2F> for Vector2F {
    type Output = Vector2F;
    #[inline]
    fn sub(self, other: Vector2F) -> Vector2F {
        Vector2F(self.0 - other.0)
    }
}

impl Mul<Vector2F> for Vector2F {
    type Output = Vector2F;
    #[inline]
    fn mul(self, other: Vector2F) -> Vector2F {
        Vector2F(self.0 * other.0)
    }
}

impl Neg for Vector2F {
    type Output = Vector2F;
    #[inline]
    fn neg(self) -> Vector2F {
        Vector2F(-self.0)
    }
}

/// 2D points with 32-bit signed integer coordinates.
#[derive(Clone, Copy, Debug, Default)]
pub struct Vector2I(pub I32x2);

impl Vector2I {
    #[inline]
    pub fn new(x: i32, y: i32) -> Vector2I {
        Vector2I(I32x2::new(x, y))
    }

    #[inline]
    pub fn splat(value: i32) -> Vector2I {
        Vector2I(I32x2::splat(value))
    }

    #[inline]
    pub fn x(self) -> i32 {
        self.0[0]
    }

    #[inline]
    pub fn y(self) -> i32 {
        self.0[1]
    }

    #[inline]
    pub fn set_x(&mut self, x: i32) {
        self.0[0] = x;
    }

    #[inline]
    pub fn set_y(&mut self, y: i32) {
        self.0[1] = y;
    }

    #[inline]
    pub fn scale(self, factor: i32) -> Vector2I {
        Vector2I(self.0 * I32x2::splat(factor))
    }

    #[inline]
    pub fn scale_xy(self, factors: Vector2I) -> Vector2I {
        Vector2I(self.0 * factors.0)
    }

    #[inline]
    pub fn to_f32(self) -> Vector2F {
        Vector2F(self.0.to_f32x2())
    }
}

impl Add<Vector2I> for Vector2I {
    type Output = Vector2I;
    #[inline]
    fn add(self, other: Vector2I) -> Vector2I {
        Vector2I(self.0 + other.0)
    }
}

impl AddAssign<Vector2I> for Vector2I {
    #[inline]
    fn add_assign(&mut self, other: Vector2I) {
        self.0 += other.0
    }
}

impl Sub<Vector2I> for Vector2I {
    type Output = Vector2I;
    #[inline]
    fn sub(self, other: Vector2I) -> Vector2I {
        Vector2I(self.0 - other.0)
    }
}

impl PartialEq for Vector2I {
    #[inline]
    fn eq(&self, other: &Vector2I) -> bool {
        self.0.packed_eq(other.0).is_all_ones()
    }
}

/// 3D homogeneous points.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Vector4F(pub F32x4);

impl Vector4F {
    #[inline]
    pub fn new(x: f32, y: f32, z: f32, w: f32) -> Vector4F {
        Vector4F(F32x4::new(x, y, z, w))
    }

    #[inline]
    pub fn splat(value: f32) -> Vector4F {
        Vector4F(F32x4::splat(value))
    }

    #[inline]
    pub fn to_2d(self) -> Vector2F {
        Vector2F(self.0.xy())
    }

    #[inline]
    pub fn x(self) -> f32 {
        self.0[0]
    }

    #[inline]
    pub fn y(self) -> f32 {
        self.0[1]
    }

    #[inline]
    pub fn z(self) -> f32 {
        self.0[2]
    }

    #[inline]
    pub fn w(self) -> f32 {
        self.0[3]
    }

    #[inline]
    pub fn scale(self, x: f32) -> Vector4F {
        let mut factors = F32x4::splat(x);
        factors[3] = 1.0;
        Vector4F(self.0 * factors)
    }

    #[inline]
    pub fn set_x(&mut self, x: f32) {
        self.0[0] = x
    }

    #[inline]
    pub fn set_y(&mut self, y: f32) {
        self.0[1] = y
    }

    #[inline]
    pub fn set_z(&mut self, z: f32) {
        self.0[2] = z
    }

    #[inline]
    pub fn set_w(&mut self, w: f32) {
        self.0[3] = w
    }

    #[inline]
    pub fn perspective_divide(self) -> Vector4F {
        Vector4F(self.0 * F32x4::splat(1.0 / self.w()))
    }

    #[inline]
    pub fn approx_eq(self, other: Vector4F, epsilon: f32) -> bool {
        self.0.approx_eq(other.0, epsilon)
    }

    /// Checks to see whether this *homogeneous* coordinate equals zero.
    ///
    /// Note that since this treats the coordinate as a homogeneous coordinate, the `w` is ignored.
    // TODO(pcwalton): Optimize with SIMD.
    #[inline]
    pub fn is_zero(self) -> bool {
        self.x() == 0.0 && self.y() == 0.0 && self.z() == 0.0
    }

    #[inline]
    pub fn lerp(self, other: Vector4F, t: f32) -> Vector4F {
        Vector4F(self.0 + (other.0 - self.0) * F32x4::splat(t))
    }
}

impl Add<Vector4F> for Vector4F {
    type Output = Vector4F;
    #[inline]
    fn add(self, other: Vector4F) -> Vector4F {
        Vector4F(self.0 + other.0)
    }
}

impl AddAssign for Vector4F {
    #[inline]
    fn add_assign(&mut self, other: Vector4F) {
        self.0 += other.0
    }
}

impl Mul<Vector4F> for Vector4F {
    type Output = Vector4F;
    #[inline]
    fn mul(self, other: Vector4F) -> Vector4F {
        Vector4F(self.0 * other.0)
    }
}

impl Neg for Vector4F {
    type Output = Vector4F;
    /// NB: This does not negate w, because that is rarely what you what for homogeneous
    /// coordinates.
    #[inline]
    fn neg(self) -> Vector4F {
        Vector4F(self.0 * F32x4::new(-1.0, -1.0, -1.0, 1.0))
    }
}

impl Default for Vector4F {
    #[inline]
    fn default() -> Vector4F {
        let mut point = F32x4::default();
        point.set_w(1.0);
        Vector4F(point)
    }
}