1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::KTuple;
//use log::trace;
use std::collections::HashSet;
use std::fmt::{Debug, Display, Error, Formatter};

///
/// A set type consisting of terminal strings (called k-tuples)
///
#[derive(Clone, Default, Eq)]
pub struct KTuples(pub HashSet<KTuple>, usize, bool);

impl KTuples {
    pub fn new(k: usize) -> Self {
        Self(HashSet::new(), k, false)
    }

    pub fn of(tuples: &[KTuple], k: usize) -> Self {
        let mut tuples = Self(tuples.iter().cloned().collect(), k, false);
        tuples.update_completeness();
        tuples
    }

    pub fn insert(&mut self, tuple: KTuple) {
        self.2 &= tuple.is_k_complete();
        self.0.insert(tuple);
    }

    pub fn remove(&mut self, tuple: &KTuple) {
        self.0.remove(tuple);
    }

    pub fn append(&mut self, other: &mut Self) -> bool {
        let count = self.0.len();
        for t in other.0.drain() {
            self.insert(t);
        }
        count != self.0.len()
    }

    pub fn union(&self, other: &Self) -> Self {
        let mut tuples = Self(
            self.0.union(&other.0).cloned().collect::<HashSet<KTuple>>(),
            self.1,
            false,
        );
        tuples.update_completeness();
        tuples
    }

    pub fn len(&self) -> usize {
        self.0.len()
    }

    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    pub fn is_disjoint(&self, other: &Self) -> bool {
        self.0.is_disjoint(&other.0)
    }

    pub fn eps(k: usize) -> Self {
        let mut set = HashSet::new();
        set.insert(KTuple::eps(k));
        Self(set, k, false)
    }

    pub fn end(k: usize) -> Self {
        let mut set = HashSet::new();
        set.insert(KTuple::end(k));
        Self(set, k, true)
    }

    ///
    /// Creates a new object from a slice of KTuple objects.
    ///
    /// ```
    /// use parol::{KTuple, KTuples, CompiledTerminal};
    /// use parol::analysis::k_tuple::TerminalMappings;
    ///
    /// {
    ///     let tuples1 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal::eps()], 1)], 1);
    ///     let tuples2 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal::eps()], 1)], 1);
    ///     let result = tuples1.k_concat(&tuples2, 1);
    ///     let expected = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal::eps()], 1)], 1);
    ///     assert_eq!(expected, result, "[ε] + [ε] = [ε]");
    /// }
    /// {
    ///     let tuples1 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     let tuples2 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal::eps()], 1)], 1);
    ///     let result = tuples1.k_concat(&tuples2, 1);
    ///     let expected = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     assert_eq!(expected, result, "[a] + [ε] = [a]");
    /// }
    /// {
    ///     let tuples1 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal::eps()], 1)], 1);
    ///     let tuples2 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     let result = tuples1.k_concat(&tuples2, 1);
    ///     let expected = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     assert_eq!(expected, result, "[ε] + [a] = [a]");
    /// }
    /// {
    ///     let tuples1 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     let tuples2 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(2)], 1)], 1);
    ///     let result = tuples1.k_concat(&tuples2, 1);
    ///     let expected = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 1)], 1);
    ///     assert_eq!(expected, result, "1: [a] + [b] = [a]");
    /// }
    /// {
    ///     let tuples1 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1)], 2)], 2);
    ///     let tuples2 = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(2)], 2)], 2);
    ///     let result = tuples1.k_concat(&tuples2, 2);
    ///     let expected = KTuples::of(&vec![KTuple::of(vec![CompiledTerminal(1), CompiledTerminal(2)], 2)], 2);
    ///     assert_eq!(expected, result, "2: [a] + [b] = [ab]");
    /// }
    ///
    /// ```
    pub fn k_concat(mut self, other: &Self, k: usize) -> Self {
        // trace!("KTuples::k_concat {} with {} at k={}", self, other, k);
        if !self.2 {
            let mut to_remove = Vec::<KTuple>::with_capacity(self.0.len()); // Maximum possible size
            let mut to_insert = HashSet::<KTuple>::with_capacity(self.0.len()); // Start size
            for i in &self.0 {
                if !i.is_k_complete() {
                    to_remove.push(i.clone());
                    for j in &other.0 {
                        to_insert.insert(i.clone().k_concat(j, k));
                    }
                }
            }
            for i in &to_remove {
                self.remove(i);
            }
            for i in to_insert {
                self.insert(i);
            }
        }
        // trace!("KTuples::k_concat => {}", result);
        self
    }

    pub fn to_string(&self, terminals: &[String]) -> String {
        format!(
            "{{{}}}(k={})",
            self.sorted()
                .iter()
                .map(|t| t.to_string(terminals))
                .collect::<Vec<String>>()
                .join(", "),
            self.1
        )
    }

    pub fn set_k(mut self, k: usize) -> Self {
        self.0 = self.0.drain().map(|t| t.set_k(k)).collect();
        if k > self.1 {
            self.2 = false;
        } else {
            self.update_completeness();
        }
        self.1 = k;
        self
    }

    pub fn sorted(&self) -> Vec<KTuple> {
        let mut sorted_k_tuples: Vec<KTuple> = self.0.iter().cloned().collect();
        sorted_k_tuples.sort_by(|a, b| a.partial_cmp(b).unwrap());
        sorted_k_tuples
    }

    fn update_completeness(&mut self) {
        self.2 = self.0.iter().all(|t| t.is_k_complete());
    }
}

impl Debug for KTuples {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        // Use the implementation of Display
        write!(f, "{}", format!("{}", self))
    }
}

impl Display for KTuples {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        write!(
            f,
            "{{{}}}(k={})",
            self.0
                .iter()
                .map(|e| format!("{}", e))
                .collect::<Vec<String>>()
                .join(", "),
            self.1
        )
    }
}

impl PartialEq for KTuples {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}