1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::elision::{have_elision, AtomicElisionExt};
use crate::raw_mutex::{TOKEN_HANDOFF, TOKEN_NORMAL};
use crate::util;
use core::{
    cell::Cell,
    sync::atomic::{AtomicUsize, Ordering},
};
use lock_api::{RawRwLock as RawRwLock_, RawRwLockUpgrade};
use parking_lot_core::{
    self, deadlock, FilterOp, ParkResult, ParkToken, SpinWait, UnparkResult, UnparkToken,
};
use std::time::{Duration, Instant};

// This reader-writer lock implementation is based on Boost's upgrade_mutex:
// https://github.com/boostorg/thread/blob/fc08c1fe2840baeeee143440fba31ef9e9a813c8/include/boost/thread/v2/shared_mutex.hpp#L432
//
// This implementation uses 2 wait queues, one at key [addr] and one at key
// [addr + 1]. The primary queue is used for all new waiting threads, and the
// secondary queue is used by the thread which has acquired WRITER_BIT but is
// waiting for the remaining readers to exit the lock.
//
// This implementation is fair between readers and writers since it uses the
// order in which threads first started queuing to alternate between read phases
// and write phases. In particular is it not vulnerable to write starvation
// since readers will block if there is a pending writer.

// There is at least one thread in the main queue.
const PARKED_BIT: usize = 0b0001;
// There is a parked thread holding WRITER_BIT. WRITER_BIT must be set.
const WRITER_PARKED_BIT: usize = 0b0010;
// A reader is holding an upgradable lock. The reader count must be non-zero and
// WRITER_BIT must not be set.
const UPGRADABLE_BIT: usize = 0b0100;
// If the reader count is zero: a writer is currently holding an exclusive lock.
// Otherwise: a writer is waiting for the remaining readers to exit the lock.
const WRITER_BIT: usize = 0b1000;
// Mask of bits used to count readers.
const READERS_MASK: usize = !0b1111;
// Base unit for counting readers.
const ONE_READER: usize = 0b10000;

// Token indicating what type of lock a queued thread is trying to acquire
const TOKEN_SHARED: ParkToken = ParkToken(ONE_READER);
const TOKEN_EXCLUSIVE: ParkToken = ParkToken(WRITER_BIT);
const TOKEN_UPGRADABLE: ParkToken = ParkToken(ONE_READER | UPGRADABLE_BIT);

/// Raw reader-writer lock type backed by the parking lot.
pub struct RawRwLock {
    state: AtomicUsize,
}

unsafe impl lock_api::RawRwLock for RawRwLock {
    const INIT: RawRwLock = RawRwLock {
        state: AtomicUsize::new(0),
    };

    type GuardMarker = crate::GuardMarker;

    #[inline]
    fn lock_exclusive(&self) {
        if self
            .state
            .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_err()
        {
            let result = self.lock_exclusive_slow(None);
            debug_assert!(result);
        }
        self.deadlock_acquire();
    }

    #[inline]
    fn try_lock_exclusive(&self) -> bool {
        if self
            .state
            .compare_exchange(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            self.deadlock_acquire();
            true
        } else {
            false
        }
    }

    #[inline]
    unsafe fn unlock_exclusive(&self) {
        self.deadlock_release();
        if self
            .state
            .compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
            .is_ok()
        {
            return;
        }
        self.unlock_exclusive_slow(false);
    }

    #[inline]
    fn lock_shared(&self) {
        if !self.try_lock_shared_fast(false) {
            let result = self.lock_shared_slow(false, None);
            debug_assert!(result);
        }
        self.deadlock_acquire();
    }

    #[inline]
    fn try_lock_shared(&self) -> bool {
        let result = if self.try_lock_shared_fast(false) {
            true
        } else {
            self.try_lock_shared_slow(false)
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    unsafe fn unlock_shared(&self) {
        self.deadlock_release();
        let state = if have_elision() {
            self.state.elision_fetch_sub_release(ONE_READER)
        } else {
            self.state.fetch_sub(ONE_READER, Ordering::Release)
        };
        if state & (READERS_MASK | WRITER_PARKED_BIT) == (ONE_READER | WRITER_PARKED_BIT) {
            self.unlock_shared_slow();
        }
    }

    #[inline]
    fn is_locked(&self) -> bool {
        let state = self.state.load(Ordering::Relaxed);
        state & (WRITER_BIT | READERS_MASK) != 0
    }

    #[inline]
    fn is_locked_exclusive(&self) -> bool {
        let state = self.state.load(Ordering::Relaxed);
        state & (WRITER_BIT) != 0
    }
}

unsafe impl lock_api::RawRwLockFair for RawRwLock {
    #[inline]
    unsafe fn unlock_shared_fair(&self) {
        // Shared unlocking is always fair in this implementation.
        self.unlock_shared();
    }

    #[inline]
    unsafe fn unlock_exclusive_fair(&self) {
        self.deadlock_release();
        if self
            .state
            .compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
            .is_ok()
        {
            return;
        }
        self.unlock_exclusive_slow(true);
    }

    #[inline]
    unsafe fn bump_shared(&self) {
        if self.state.load(Ordering::Relaxed) & (READERS_MASK | WRITER_BIT)
            == ONE_READER | WRITER_BIT
        {
            self.bump_shared_slow();
        }
    }

    #[inline]
    unsafe fn bump_exclusive(&self) {
        if self.state.load(Ordering::Relaxed) & PARKED_BIT != 0 {
            self.bump_exclusive_slow();
        }
    }
}

unsafe impl lock_api::RawRwLockDowngrade for RawRwLock {
    #[inline]
    unsafe fn downgrade(&self) {
        let state = self
            .state
            .fetch_add(ONE_READER - WRITER_BIT, Ordering::Release);

        // Wake up parked shared and upgradable threads if there are any
        if state & PARKED_BIT != 0 {
            self.downgrade_slow();
        }
    }
}

unsafe impl lock_api::RawRwLockTimed for RawRwLock {
    type Duration = Duration;
    type Instant = Instant;

    #[inline]
    fn try_lock_shared_for(&self, timeout: Self::Duration) -> bool {
        let result = if self.try_lock_shared_fast(false) {
            true
        } else {
            self.lock_shared_slow(false, util::to_deadline(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    fn try_lock_shared_until(&self, timeout: Self::Instant) -> bool {
        let result = if self.try_lock_shared_fast(false) {
            true
        } else {
            self.lock_shared_slow(false, Some(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    fn try_lock_exclusive_for(&self, timeout: Duration) -> bool {
        let result = if self
            .state
            .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            true
        } else {
            self.lock_exclusive_slow(util::to_deadline(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    fn try_lock_exclusive_until(&self, timeout: Instant) -> bool {
        let result = if self
            .state
            .compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            true
        } else {
            self.lock_exclusive_slow(Some(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }
}

unsafe impl lock_api::RawRwLockRecursive for RawRwLock {
    #[inline]
    fn lock_shared_recursive(&self) {
        if !self.try_lock_shared_fast(true) {
            let result = self.lock_shared_slow(true, None);
            debug_assert!(result);
        }
        self.deadlock_acquire();
    }

    #[inline]
    fn try_lock_shared_recursive(&self) -> bool {
        let result = if self.try_lock_shared_fast(true) {
            true
        } else {
            self.try_lock_shared_slow(true)
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }
}

unsafe impl lock_api::RawRwLockRecursiveTimed for RawRwLock {
    #[inline]
    fn try_lock_shared_recursive_for(&self, timeout: Self::Duration) -> bool {
        let result = if self.try_lock_shared_fast(true) {
            true
        } else {
            self.lock_shared_slow(true, util::to_deadline(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    fn try_lock_shared_recursive_until(&self, timeout: Self::Instant) -> bool {
        let result = if self.try_lock_shared_fast(true) {
            true
        } else {
            self.lock_shared_slow(true, Some(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }
}

unsafe impl lock_api::RawRwLockUpgrade for RawRwLock {
    #[inline]
    fn lock_upgradable(&self) {
        if !self.try_lock_upgradable_fast() {
            let result = self.lock_upgradable_slow(None);
            debug_assert!(result);
        }
        self.deadlock_acquire();
    }

    #[inline]
    fn try_lock_upgradable(&self) -> bool {
        let result = if self.try_lock_upgradable_fast() {
            true
        } else {
            self.try_lock_upgradable_slow()
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    unsafe fn unlock_upgradable(&self) {
        self.deadlock_release();
        let state = self.state.load(Ordering::Relaxed);
        if state & PARKED_BIT == 0 {
            if self
                .state
                .compare_exchange_weak(
                    state,
                    state - (ONE_READER | UPGRADABLE_BIT),
                    Ordering::Release,
                    Ordering::Relaxed,
                )
                .is_ok()
            {
                return;
            }
        }
        self.unlock_upgradable_slow(false);
    }

    #[inline]
    unsafe fn upgrade(&self) {
        let state = self.state.fetch_sub(
            (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
            Ordering::Acquire,
        );
        if state & READERS_MASK != ONE_READER {
            let result = self.upgrade_slow(None);
            debug_assert!(result);
        }
    }

    #[inline]
    unsafe fn try_upgrade(&self) -> bool {
        if self
            .state
            .compare_exchange_weak(
                ONE_READER | UPGRADABLE_BIT,
                WRITER_BIT,
                Ordering::Acquire,
                Ordering::Relaxed,
            )
            .is_ok()
        {
            true
        } else {
            self.try_upgrade_slow()
        }
    }
}

unsafe impl lock_api::RawRwLockUpgradeFair for RawRwLock {
    #[inline]
    unsafe fn unlock_upgradable_fair(&self) {
        self.deadlock_release();
        let state = self.state.load(Ordering::Relaxed);
        if state & PARKED_BIT == 0 {
            if self
                .state
                .compare_exchange_weak(
                    state,
                    state - (ONE_READER | UPGRADABLE_BIT),
                    Ordering::Release,
                    Ordering::Relaxed,
                )
                .is_ok()
            {
                return;
            }
        }
        self.unlock_upgradable_slow(false);
    }

    #[inline]
    unsafe fn bump_upgradable(&self) {
        if self.state.load(Ordering::Relaxed) == ONE_READER | UPGRADABLE_BIT | PARKED_BIT {
            self.bump_upgradable_slow();
        }
    }
}

unsafe impl lock_api::RawRwLockUpgradeDowngrade for RawRwLock {
    #[inline]
    unsafe fn downgrade_upgradable(&self) {
        let state = self.state.fetch_sub(UPGRADABLE_BIT, Ordering::Relaxed);

        // Wake up parked upgradable threads if there are any
        if state & PARKED_BIT != 0 {
            self.downgrade_slow();
        }
    }

    #[inline]
    unsafe fn downgrade_to_upgradable(&self) {
        let state = self.state.fetch_add(
            (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
            Ordering::Release,
        );

        // Wake up parked shared threads if there are any
        if state & PARKED_BIT != 0 {
            self.downgrade_to_upgradable_slow();
        }
    }
}

unsafe impl lock_api::RawRwLockUpgradeTimed for RawRwLock {
    #[inline]
    fn try_lock_upgradable_until(&self, timeout: Instant) -> bool {
        let result = if self.try_lock_upgradable_fast() {
            true
        } else {
            self.lock_upgradable_slow(Some(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    fn try_lock_upgradable_for(&self, timeout: Duration) -> bool {
        let result = if self.try_lock_upgradable_fast() {
            true
        } else {
            self.lock_upgradable_slow(util::to_deadline(timeout))
        };
        if result {
            self.deadlock_acquire();
        }
        result
    }

    #[inline]
    unsafe fn try_upgrade_until(&self, timeout: Instant) -> bool {
        let state = self.state.fetch_sub(
            (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
            Ordering::Relaxed,
        );
        if state & READERS_MASK == ONE_READER {
            true
        } else {
            self.upgrade_slow(Some(timeout))
        }
    }

    #[inline]
    unsafe fn try_upgrade_for(&self, timeout: Duration) -> bool {
        let state = self.state.fetch_sub(
            (ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
            Ordering::Relaxed,
        );
        if state & READERS_MASK == ONE_READER {
            true
        } else {
            self.upgrade_slow(util::to_deadline(timeout))
        }
    }
}

impl RawRwLock {
    #[inline(always)]
    fn try_lock_shared_fast(&self, recursive: bool) -> bool {
        let state = self.state.load(Ordering::Relaxed);

        // We can't allow grabbing a shared lock if there is a writer, even if
        // the writer is still waiting for the remaining readers to exit.
        if state & WRITER_BIT != 0 {
            // To allow recursive locks, we make an exception and allow readers
            // to skip ahead of a pending writer to avoid deadlocking, at the
            // cost of breaking the fairness guarantees.
            if !recursive || state & READERS_MASK == 0 {
                return false;
            }
        }

        // Use hardware lock elision to avoid cache conflicts when multiple
        // readers try to acquire the lock. We only do this if the lock is
        // completely empty since elision handles conflicts poorly.
        if have_elision() && state == 0 {
            self.state
                .elision_compare_exchange_acquire(0, ONE_READER)
                .is_ok()
        } else if let Some(new_state) = state.checked_add(ONE_READER) {
            self.state
                .compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
                .is_ok()
        } else {
            false
        }
    }

    #[cold]
    fn try_lock_shared_slow(&self, recursive: bool) -> bool {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // This mirrors the condition in try_lock_shared_fast
            if state & WRITER_BIT != 0 {
                if !recursive || state & READERS_MASK == 0 {
                    return false;
                }
            }
            if have_elision() && state == 0 {
                match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
                    Ok(_) => return true,
                    Err(x) => state = x,
                }
            } else {
                match self.state.compare_exchange_weak(
                    state,
                    state
                        .checked_add(ONE_READER)
                        .expect("RwLock reader count overflow"),
                    Ordering::Acquire,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return true,
                    Err(x) => state = x,
                }
            }
        }
    }

    #[inline(always)]
    fn try_lock_upgradable_fast(&self) -> bool {
        let state = self.state.load(Ordering::Relaxed);

        // We can't grab an upgradable lock if there is already a writer or
        // upgradable reader.
        if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
            return false;
        }

        if let Some(new_state) = state.checked_add(ONE_READER | UPGRADABLE_BIT) {
            self.state
                .compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
                .is_ok()
        } else {
            false
        }
    }

    #[cold]
    fn try_lock_upgradable_slow(&self) -> bool {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // This mirrors the condition in try_lock_upgradable_fast
            if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
                return false;
            }

            match self.state.compare_exchange_weak(
                state,
                state
                    .checked_add(ONE_READER | UPGRADABLE_BIT)
                    .expect("RwLock reader count overflow"),
                Ordering::Acquire,
                Ordering::Relaxed,
            ) {
                Ok(_) => return true,
                Err(x) => state = x,
            }
        }
    }

    #[cold]
    fn lock_exclusive_slow(&self, timeout: Option<Instant>) -> bool {
        let try_lock = |state: &mut usize| {
            loop {
                if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
                    return false;
                }

                // Grab WRITER_BIT if it isn't set, even if there are parked threads.
                match self.state.compare_exchange_weak(
                    *state,
                    *state | WRITER_BIT,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return true,
                    Err(x) => *state = x,
                }
            }
        };

        // Step 1: grab exclusive ownership of WRITER_BIT
        let timed_out = !self.lock_common(
            timeout,
            TOKEN_EXCLUSIVE,
            try_lock,
            WRITER_BIT | UPGRADABLE_BIT,
        );
        if timed_out {
            return false;
        }

        // Step 2: wait for all remaining readers to exit the lock.
        self.wait_for_readers(timeout, 0)
    }

    #[cold]
    fn unlock_exclusive_slow(&self, force_fair: bool) {
        // There are threads to unpark. Try to unpark as many as we can.
        let callback = |mut new_state, result: UnparkResult| {
            // If we are using a fair unlock then we should keep the
            // rwlock locked and hand it off to the unparked threads.
            if result.unparked_threads != 0 && (force_fair || result.be_fair) {
                if result.have_more_threads {
                    new_state |= PARKED_BIT;
                }
                self.state.store(new_state, Ordering::Release);
                TOKEN_HANDOFF
            } else {
                // Clear the parked bit if there are no more parked threads.
                if result.have_more_threads {
                    self.state.store(PARKED_BIT, Ordering::Release);
                } else {
                    self.state.store(0, Ordering::Release);
                }
                TOKEN_NORMAL
            }
        };
        // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
        unsafe {
            self.wake_parked_threads(0, callback);
        }
    }

    #[cold]
    fn lock_shared_slow(&self, recursive: bool, timeout: Option<Instant>) -> bool {
        let try_lock = |state: &mut usize| {
            let mut spinwait_shared = SpinWait::new();
            loop {
                // Use hardware lock elision to avoid cache conflicts when multiple
                // readers try to acquire the lock. We only do this if the lock is
                // completely empty since elision handles conflicts poorly.
                if have_elision() && *state == 0 {
                    match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
                        Ok(_) => return true,
                        Err(x) => *state = x,
                    }
                }

                // This is the same condition as try_lock_shared_fast
                if *state & WRITER_BIT != 0 {
                    if !recursive || *state & READERS_MASK == 0 {
                        return false;
                    }
                }

                if self
                    .state
                    .compare_exchange_weak(
                        *state,
                        state
                            .checked_add(ONE_READER)
                            .expect("RwLock reader count overflow"),
                        Ordering::Acquire,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    return true;
                }

                // If there is high contention on the reader count then we want
                // to leave some time between attempts to acquire the lock to
                // let other threads make progress.
                spinwait_shared.spin_no_yield();
                *state = self.state.load(Ordering::Relaxed);
            }
        };
        self.lock_common(timeout, TOKEN_SHARED, try_lock, WRITER_BIT)
    }

    #[cold]
    fn unlock_shared_slow(&self) {
        // At this point WRITER_PARKED_BIT is set and READER_MASK is empty. We
        // just need to wake up a potentially sleeping pending writer.
        // Using the 2nd key at addr + 1
        let addr = self as *const _ as usize + 1;
        let callback = |_result: UnparkResult| {
            // Clear the WRITER_PARKED_BIT here since there can only be one
            // parked writer thread.
            self.state.fetch_and(!WRITER_PARKED_BIT, Ordering::Relaxed);
            TOKEN_NORMAL
        };
        // SAFETY:
        //   * `addr` is an address we control.
        //   * `callback` does not panic or call into any function of `parking_lot`.
        unsafe {
            parking_lot_core::unpark_one(addr, callback);
        }
    }

    #[cold]
    fn lock_upgradable_slow(&self, timeout: Option<Instant>) -> bool {
        let try_lock = |state: &mut usize| {
            let mut spinwait_shared = SpinWait::new();
            loop {
                if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
                    return false;
                }

                if self
                    .state
                    .compare_exchange_weak(
                        *state,
                        state
                            .checked_add(ONE_READER | UPGRADABLE_BIT)
                            .expect("RwLock reader count overflow"),
                        Ordering::Acquire,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    return true;
                }

                // If there is high contention on the reader count then we want
                // to leave some time between attempts to acquire the lock to
                // let other threads make progress.
                spinwait_shared.spin_no_yield();
                *state = self.state.load(Ordering::Relaxed);
            }
        };
        self.lock_common(
            timeout,
            TOKEN_UPGRADABLE,
            try_lock,
            WRITER_BIT | UPGRADABLE_BIT,
        )
    }

    #[cold]
    fn unlock_upgradable_slow(&self, force_fair: bool) {
        // Just release the lock if there are no parked threads.
        let mut state = self.state.load(Ordering::Relaxed);
        while state & PARKED_BIT == 0 {
            match self.state.compare_exchange_weak(
                state,
                state - (ONE_READER | UPGRADABLE_BIT),
                Ordering::Release,
                Ordering::Relaxed,
            ) {
                Ok(_) => return,
                Err(x) => state = x,
            }
        }

        // There are threads to unpark. Try to unpark as many as we can.
        let callback = |new_state, result: UnparkResult| {
            // If we are using a fair unlock then we should keep the
            // rwlock locked and hand it off to the unparked threads.
            let mut state = self.state.load(Ordering::Relaxed);
            if force_fair || result.be_fair {
                // Fall back to normal unpark on overflow. Panicking is
                // not allowed in parking_lot callbacks.
                while let Some(mut new_state) =
                    (state - (ONE_READER | UPGRADABLE_BIT)).checked_add(new_state)
                {
                    if result.have_more_threads {
                        new_state |= PARKED_BIT;
                    } else {
                        new_state &= !PARKED_BIT;
                    }
                    match self.state.compare_exchange_weak(
                        state,
                        new_state,
                        Ordering::Relaxed,
                        Ordering::Relaxed,
                    ) {
                        Ok(_) => return TOKEN_HANDOFF,
                        Err(x) => state = x,
                    }
                }
            }

            // Otherwise just release the upgradable lock and update PARKED_BIT.
            loop {
                let mut new_state = state - (ONE_READER | UPGRADABLE_BIT);
                if result.have_more_threads {
                    new_state |= PARKED_BIT;
                } else {
                    new_state &= !PARKED_BIT;
                }
                match self.state.compare_exchange_weak(
                    state,
                    new_state,
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return TOKEN_NORMAL,
                    Err(x) => state = x,
                }
            }
        };
        // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
        unsafe {
            self.wake_parked_threads(0, callback);
        }
    }

    #[cold]
    fn try_upgrade_slow(&self) -> bool {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            if state & READERS_MASK != ONE_READER {
                return false;
            }
            match self.state.compare_exchange_weak(
                state,
                state - (ONE_READER | UPGRADABLE_BIT) + WRITER_BIT,
                Ordering::Relaxed,
                Ordering::Relaxed,
            ) {
                Ok(_) => return true,
                Err(x) => state = x,
            }
        }
    }

    #[cold]
    fn upgrade_slow(&self, timeout: Option<Instant>) -> bool {
        self.wait_for_readers(timeout, ONE_READER | UPGRADABLE_BIT)
    }

    #[cold]
    fn downgrade_slow(&self) {
        // We only reach this point if PARKED_BIT is set.
        let callback = |_, result: UnparkResult| {
            // Clear the parked bit if there no more parked threads
            if !result.have_more_threads {
                self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
            }
            TOKEN_NORMAL
        };
        // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
        unsafe {
            self.wake_parked_threads(ONE_READER, callback);
        }
    }

    #[cold]
    fn downgrade_to_upgradable_slow(&self) {
        // We only reach this point if PARKED_BIT is set.
        let callback = |_, result: UnparkResult| {
            // Clear the parked bit if there no more parked threads
            if !result.have_more_threads {
                self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
            }
            TOKEN_NORMAL
        };
        // SAFETY: `callback` does not panic or call into any function of `parking_lot`.
        unsafe {
            self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
        }
    }

    #[cold]
    unsafe fn bump_shared_slow(&self) {
        self.unlock_shared();
        self.lock_shared();
    }

    #[cold]
    fn bump_exclusive_slow(&self) {
        self.deadlock_release();
        self.unlock_exclusive_slow(true);
        self.lock_exclusive();
    }

    #[cold]
    fn bump_upgradable_slow(&self) {
        self.deadlock_release();
        self.unlock_upgradable_slow(true);
        self.lock_upgradable();
    }

    /// Common code for waking up parked threads after releasing WRITER_BIT or
    /// UPGRADABLE_BIT.
    ///
    /// # Safety
    ///
    /// `callback` must uphold the requirements of the `callback` parameter to
    /// `parking_lot_core::unpark_filter`. Meaning no panics or calls into any function in
    /// `parking_lot`.
    #[inline]
    unsafe fn wake_parked_threads(
        &self,
        new_state: usize,
        callback: impl FnOnce(usize, UnparkResult) -> UnparkToken,
    ) {
        // We must wake up at least one upgrader or writer if there is one,
        // otherwise they may end up parked indefinitely since unlock_shared
        // does not call wake_parked_threads.
        let new_state = Cell::new(new_state);
        let addr = self as *const _ as usize;
        let filter = |ParkToken(token)| {
            let s = new_state.get();

            // If we are waking up a writer, don't wake anything else.
            if s & WRITER_BIT != 0 {
                return FilterOp::Stop;
            }

            // Otherwise wake *all* readers and one upgrader/writer.
            if token & (UPGRADABLE_BIT | WRITER_BIT) != 0 && s & UPGRADABLE_BIT != 0 {
                // Skip writers and upgradable readers if we already have
                // a writer/upgradable reader.
                FilterOp::Skip
            } else {
                new_state.set(s + token);
                FilterOp::Unpark
            }
        };
        let callback = |result| callback(new_state.get(), result);
        // SAFETY:
        // * `addr` is an address we control.
        // * `filter` does not panic or call into any function of `parking_lot`.
        // * `callback` safety responsibility is on caller
        parking_lot_core::unpark_filter(addr, filter, callback);
    }

    // Common code for waiting for readers to exit the lock after acquiring
    // WRITER_BIT.
    #[inline]
    fn wait_for_readers(&self, timeout: Option<Instant>, prev_value: usize) -> bool {
        // At this point WRITER_BIT is already set, we just need to wait for the
        // remaining readers to exit the lock.
        let mut spinwait = SpinWait::new();
        let mut state = self.state.load(Ordering::Acquire);
        while state & READERS_MASK != 0 {
            // Spin a few times to wait for readers to exit
            if spinwait.spin() {
                state = self.state.load(Ordering::Acquire);
                continue;
            }

            // Set the parked bit
            if state & WRITER_PARKED_BIT == 0 {
                if let Err(x) = self.state.compare_exchange_weak(
                    state,
                    state | WRITER_PARKED_BIT,
                    Ordering::Acquire,
                    Ordering::Acquire,
                ) {
                    state = x;
                    continue;
                }
            }

            // Park our thread until we are woken up by an unlock
            // Using the 2nd key at addr + 1
            let addr = self as *const _ as usize + 1;
            let validate = || {
                let state = self.state.load(Ordering::Relaxed);
                state & READERS_MASK != 0 && state & WRITER_PARKED_BIT != 0
            };
            let before_sleep = || {};
            let timed_out = |_, _| {};
            // SAFETY:
            //   * `addr` is an address we control.
            //   * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
            //   * `before_sleep` does not call `park`, nor does it panic.
            let park_result = unsafe {
                parking_lot_core::park(
                    addr,
                    validate,
                    before_sleep,
                    timed_out,
                    TOKEN_EXCLUSIVE,
                    timeout,
                )
            };
            match park_result {
                // We still need to re-check the state if we are unparked
                // since a previous writer timing-out could have allowed
                // another reader to sneak in before we parked.
                ParkResult::Unparked(_) | ParkResult::Invalid => {
                    state = self.state.load(Ordering::Acquire);
                    continue;
                }

                // Timeout expired
                ParkResult::TimedOut => {
                    // We need to release WRITER_BIT and revert back to
                    // our previous value. We also wake up any threads that
                    // might be waiting on WRITER_BIT.
                    let state = self.state.fetch_add(
                        prev_value.wrapping_sub(WRITER_BIT | WRITER_PARKED_BIT),
                        Ordering::Relaxed,
                    );
                    if state & PARKED_BIT != 0 {
                        let callback = |_, result: UnparkResult| {
                            // Clear the parked bit if there no more parked threads
                            if !result.have_more_threads {
                                self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
                            }
                            TOKEN_NORMAL
                        };
                        // SAFETY: `callback` does not panic or call any function of `parking_lot`.
                        unsafe {
                            self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
                        }
                    }
                    return false;
                }
            }
        }
        true
    }

    /// Common code for acquiring a lock
    #[inline]
    fn lock_common(
        &self,
        timeout: Option<Instant>,
        token: ParkToken,
        mut try_lock: impl FnMut(&mut usize) -> bool,
        validate_flags: usize,
    ) -> bool {
        let mut spinwait = SpinWait::new();
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // Attempt to grab the lock
            if try_lock(&mut state) {
                return true;
            }

            // If there are no parked threads, try spinning a few times.
            if state & (PARKED_BIT | WRITER_PARKED_BIT) == 0 && spinwait.spin() {
                state = self.state.load(Ordering::Relaxed);
                continue;
            }

            // Set the parked bit
            if state & PARKED_BIT == 0 {
                if let Err(x) = self.state.compare_exchange_weak(
                    state,
                    state | PARKED_BIT,
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                ) {
                    state = x;
                    continue;
                }
            }

            // Park our thread until we are woken up by an unlock
            let addr = self as *const _ as usize;
            let validate = || {
                let state = self.state.load(Ordering::Relaxed);
                state & PARKED_BIT != 0 && (state & validate_flags != 0)
            };
            let before_sleep = || {};
            let timed_out = |_, was_last_thread| {
                // Clear the parked bit if we were the last parked thread
                if was_last_thread {
                    self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
                }
            };

            // SAFETY:
            // * `addr` is an address we control.
            // * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
            // * `before_sleep` does not call `park`, nor does it panic.
            let park_result = unsafe {
                parking_lot_core::park(addr, validate, before_sleep, timed_out, token, timeout)
            };
            match park_result {
                // The thread that unparked us passed the lock on to us
                // directly without unlocking it.
                ParkResult::Unparked(TOKEN_HANDOFF) => return true,

                // We were unparked normally, try acquiring the lock again
                ParkResult::Unparked(_) => (),

                // The validation function failed, try locking again
                ParkResult::Invalid => (),

                // Timeout expired
                ParkResult::TimedOut => return false,
            }

            // Loop back and try locking again
            spinwait.reset();
            state = self.state.load(Ordering::Relaxed);
        }
    }

    #[inline]
    fn deadlock_acquire(&self) {
        unsafe { deadlock::acquire_resource(self as *const _ as usize) };
        unsafe { deadlock::acquire_resource(self as *const _ as usize + 1) };
    }

    #[inline]
    fn deadlock_release(&self) {
        unsafe { deadlock::release_resource(self as *const _ as usize) };
        unsafe { deadlock::release_resource(self as *const _ as usize + 1) };
    }
}