1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright (c) 2016-2017 Guillaume Pinot <texitoi(a)texitoi.eu>
//
// This work is free. You can redistribute it and/or modify it under
// the terms of the Do What The Fuck You Want To Public License,
// Version 2, as published by Sam Hocevar. See the COPYING file for
// more details.

//! This crate provides an easy way to get parallel iteration.  The
//! contract of the added method are (almost) exacly the same as the
//! method without the `par_` prefix proposed in `std`.

#[deny(missing_docs)]

extern crate futures;
extern crate futures_cpupool;
extern crate num_cpus;
#[macro_use]
extern crate pub_iterator_type;

use std::collections::VecDeque;
use std::sync::Arc;
use futures::Future;
use futures_cpupool::{CpuPool, CpuFuture};

/// This trait extends `std::iter::Iterator` with parallel
/// iterator adaptors.  Just `use` it to get access to the methods:
///
/// ```
/// use par_map::ParMap;
/// ```
///
/// Each iterator adaptor will have its own thread pool of the number
/// of CPU.  At maximum, 2 times the number of CPU tasks will be
/// launched in advance, guarantying that the memory will not be
/// exceeded if the iterator is not consumed faster that the
/// production.  To be effective, the given function should be costy
/// to compute and each call should take about the same time.  The
/// `packed` variants will do the same, processing by batch instead of
/// doing one job for each item.
///
/// The `'static` constraints are needed to have such a simple
/// interface.  These adaptors are well suited for big iterators that
/// can't be collected into a `Vec`.  Else, crates such as `rayon` are
/// more suited for this kind of task.
pub trait ParMap: Iterator + Sized {
    /// Takes a closure and creates an iterator which calls that
    /// closure on each element, exactly as
    /// `std::iter::Iterator::map`.
    ///
    /// The order of the elements are guaranted to be unchanged.  Of
    /// course, the given closures can be executed in parallel out of
    /// order.
    ///
    /// # Example
    ///
    /// ```
    /// use par_map::ParMap;
    /// let a = [1, 2, 3];
    /// let mut iter = a.iter().cloned().par_map(|x| 2 * x);
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(4));
    /// assert_eq!(iter.next(), Some(6));
    /// assert_eq!(iter.next(), None);
    /// ```
    fn par_map<B, F>(self, f: F) -> Map<Self, B, F>
    where
        F: Sync + Send + 'static + Fn(Self::Item) -> B,
        B: Send + 'static,
        Self::Item: Send + 'static,
    {
        let num_threads = num_cpus::get();
        let mut res = Map {
            pool: CpuPool::new(num_threads),
            queue: VecDeque::new(),
            iter: self,
            f: Arc::new(f),
        };
        for _ in 0..num_threads * 2 {
            res.spawn();
        }
        res
    }

    /// Creates an iterator that works like map, but flattens nested
    /// structure, exactly as `std::iter::Iterator::flat_map`.
    ///
    /// The order of the elements are guaranted to be unchanged.  Of
    /// course, the given closures can be executed in parallel out of
    /// order.
    ///
    /// # Example
    ///
    /// ```
    /// use par_map::ParMap;
    /// let words = ["alpha", "beta", "gamma"];
    /// let merged: String = words.iter()
    ///     .cloned() // as items must be 'static
    ///     .par_flat_map(|s| s.chars()) // exactly as std::iter::Iterator::flat_map
    ///     .collect();
    /// assert_eq!(merged, "alphabetagamma");
    /// ```
    fn par_flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
    where
        F: Sync + Send + 'static + Fn(Self::Item) -> U,
        U: IntoIterator,
        U::Item: Send + 'static,
        Self::Item: Send + 'static,
    {
        let num_threads = num_cpus::get();
        let mut res = FlatMap {
            pool: CpuPool::new(num_threads),
            queue: VecDeque::new(),
            iter: self,
            f: Arc::new(f),
            cur_iter: vec![].into_iter(),
        };
        for _ in 0..num_threads * 2 {
            res.spawn();
        }
        res
    }

    /// Creates an iterator that yields `Vec<Self::Item>` of size `nb`
    /// (or less on the last element).
    ///
    /// # Example
    ///
    /// ```
    /// use par_map::ParMap;
    /// let nbs = [1, 2, 3, 4, 5, 6, 7];
    /// let mut iter = nbs.iter().cloned().pack(3);
    /// assert_eq!(Some(vec![1, 2, 3]), iter.next());
    /// assert_eq!(Some(vec![4, 5, 6]), iter.next());
    /// assert_eq!(Some(vec![7]), iter.next());
    /// assert_eq!(None, iter.next());
    /// ```
    fn pack(self, nb: usize) -> Pack<Self> {
        Pack { iter: self, nb: nb }
    }

    /// Same as `par_map`, but the parallel work is batched by `nb` items.
    ///
    /// # Example
    ///
    /// ```
    /// use par_map::ParMap;
    /// let a = [1, 2, 3];
    /// let mut iter = a.iter().cloned().par_packed_map(2, |x| 2 * x);
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(4));
    /// assert_eq!(iter.next(), Some(6));
    /// assert_eq!(iter.next(), None);
    /// ```
    fn par_packed_map<'a, B, F>(self, nb: usize, f: F) -> PackedMap<'a, B>
    where
        F: Sync + Send + 'static + Fn(Self::Item) -> B,
        B: Send + 'static,
        Self::Item: Send + 'static,
        Self: 'a,
    {
        let f = Arc::new(f);
        let f = move |iter: Vec<Self::Item>| {
            let f = f.clone();
            iter.into_iter().map(move |i| f(i))
        };
        PackedMap(Box::new(self.pack(nb).par_flat_map(f)))
    }

    /// Same as `par_flat_map`, but the parallel work is batched by `nb` items.
    ///
    /// # Example
    ///
    /// ```
    /// use par_map::ParMap;
    /// let words = ["alpha", "beta", "gamma"];
    /// let merged: String = words.iter()
    ///     .cloned()
    ///     .par_packed_flat_map(2, |s| s.chars())
    ///     .collect();
    /// assert_eq!(merged, "alphabetagamma");
    /// ```
    fn par_packed_flat_map<'a, U, F>(self, nb: usize, f: F) -> PackedFlatMap<'a, U::Item>
    where
        F: Sync + Send + 'static + Fn(Self::Item) -> U,
        U: IntoIterator + 'a,
        U::Item: Send + 'static,
        Self::Item: Send + 'static,
        Self: 'a,
    {
        let f = Arc::new(f);
        let f = move |iter: Vec<Self::Item>| {
            let f = f.clone();
            iter.into_iter().flat_map(move |i| f(i))
        };
        PackedFlatMap(Box::new(self.pack(nb).par_flat_map(f)))
    }
}
impl<I: Iterator> ParMap for I {}

/// An iterator that maps the values of `iter` with `f`.
///
/// This struct is created by the `flat_map()` method on
/// `ParIter`. See its documentation for more.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Map<I, B, F> {
    pool: CpuPool,
    queue: VecDeque<CpuFuture<B, ()>>,
    iter: I,
    f: Arc<F>,
}
impl<I: Iterator, B: Send + 'static, F> Map<I, B, F>
where
    F: Sync + Send + 'static + Fn(I::Item) -> B,
    I::Item: Send + 'static,
{
    fn spawn(&mut self) {
        let future = match self.iter.next() {
            None => return,
            Some(item) => {
                let f = self.f.clone();
                self.pool.spawn_fn(move || Ok(f(item)))
            }
        };
        self.queue.push_back(future);
    }
}
impl<I: Iterator, B: Send + 'static, F> Iterator for Map<I, B, F>
where
    F: Sync
        + Send
        + 'static
        + Fn(I::Item) -> B,
    I::Item: Send + 'static,
{
    type Item = B;
    fn next(&mut self) -> Option<Self::Item> {
        self.queue.pop_front().map(|future| {
            let i = future.wait().unwrap();
            self.spawn();
            i
        })
    }
}

/// An iterator that maps each element to an iterator, and yields the
/// elements of the produced iterators.
///
/// This struct is created by the `par_flat_map()` method on
/// `ParIter`.  See its documentation for more.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct FlatMap<I: Iterator, U: IntoIterator, F> {
    pool: CpuPool,
    queue: VecDeque<CpuFuture<Vec<U::Item>, ()>>,
    iter: I,
    f: Arc<F>,
    cur_iter: ::std::vec::IntoIter<U::Item>,
}
impl<I: Iterator, U: IntoIterator, F> FlatMap<I, U, F>
where
    F: Sync + Send + 'static + Fn(I::Item) -> U,
    U::Item: Send + 'static,
    I::Item: Send + 'static,
{
    fn spawn(&mut self) {
        let future = match self.iter.next() {
            None => return,
            Some(item) => {
                let f = self.f.clone();
                self.pool.spawn_fn(
                    move || Ok(f(item).into_iter().collect()),
                )
            }
        };
        self.queue.push_back(future);
    }
}
impl<I: Iterator, U: IntoIterator, F> Iterator for FlatMap<I, U, F>
where
    F: Sync
        + Send
        + 'static
        + Fn(I::Item) -> U,
    U::Item: Send + 'static,
    I::Item: Send + 'static,
{
    type Item = U::Item;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if let Some(item) = self.cur_iter.next() {
                return Some(item);
            }
            let v = match self.queue.pop_front() {
                Some(future) => future.wait().unwrap(),
                None => return None,
            };
            self.cur_iter = v.into_iter();
            self.spawn();
        }
    }
}

/// An iterator that yields `Vec<Self::Item>` of size `nb` (or less on
/// the last element).
///
/// This struct is created by the `pack()` method on
/// `ParIter`.  See its documentation for more.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Pack<I> {
    iter: I,
    nb: usize,
}
impl<I: Iterator> Iterator for Pack<I> {
    type Item = Vec<I::Item>;
    fn next(&mut self) -> Option<Self::Item> {
        let item: Vec<_> = self.iter.by_ref().take(self.nb).collect();
        if item.is_empty() { None } else { Some(item) }
    }
}

pub_iterator_type! {
    #[doc="As `Map` but packed."]
    PackedMap['a, B] = Box<Iterator<Item = B> + 'a>
}
pub_iterator_type! {
    #[doc="As `FlatMap` but packed."]
    PackedFlatMap['a, T] = Box<Iterator<Item = T> + 'a>
}