1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//! A priority queue based on a [pairing heap].
//!
//! See [`PairingHeap`](struct.PairingHeap.html) for details.
//!
//! [pairing heap]: https://en.wikipedia.org/wiki/Pairing_heap

#![deny(missing_docs)]

use std::fmt::{self, Debug};
use std::{mem, slice};

#[derive(Clone)]
struct Node<T> {
    item: T,
    children: Vec<Node<T>>,
}

impl<T> Node<T> {
    fn merge(&mut self, mut other: Self) where T: Ord {
        if self.item < other.item {
            mem::swap(self, &mut other);
        }

        self.children.push(other);
    }

    fn reduce(nodes: Vec<Self>) -> Option<Self> where T: Ord {
        fn unwrap<T>(option: Option<T>) -> T {
            match option {
                None => if cfg!(debug) { panic!() } else { unreachable!() },
                Some(t) => t,
            }
        }

        let mut nodes = nodes.into_iter();

        nodes.next().map(|mut root| {
            if nodes.len() % 2 == 1 {
                root.merge(unwrap(nodes.next()));
            }

            while let Some(mut node) = nodes.next() {
                node.merge(unwrap(nodes.next()));
                root.merge(node);
            }

            root
        })
    }

    fn replace_item(&mut self, mut item: T) -> T where T: Ord {
        mem::swap(&mut item, &mut self.item);
        let mut node = self;

        loop {
            let tmp = node;
            let mut it = tmp.children.iter_mut();

            match it.next() {
                None => return item,
                Some(mut max) => {
                    for child in it {
                        if child.item > max.item {
                            max = child;
                        }
                    }

                    if tmp.item > max.item { return item; }
                    mem::swap(&mut tmp.item, &mut max.item);
                    node = max;
                }
            }
        }
    }
}

/// An iterator that drains a `PairingHeap`, yielding its items in arbitrary order.
///
/// Acquire through [`PairingHeap::drain`](struct.PairingHeap.html#method.drain).
pub struct Drain<'a, T: 'a + Ord> {
    heap: &'a mut PairingHeap<T>,
}

impl<'a, T: Ord> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        self.heap.clear();
    }
}

impl<'a, T: Ord> Iterator for Drain<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.heap.pop()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.heap.len, Some(self.heap.len))
    }
}

impl<'a, T: Ord> ExactSizeIterator for Drain<'a, T> {
    fn len(&self) -> usize {
        self.heap.len
    }
}

/// An iterator that yields the items in a `PairingHeap` in arbitrary order.
///
/// Acquire through [`IntoIterator::into_iter`](struct.PairingHeap.html#method.into_iter).
pub struct IntoIter<T: Ord> {
    heap: PairingHeap<T>,
}

impl<T: Ord> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.heap.pop()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.heap.len, Some(self.heap.len))
    }
}

impl<T: Ord> ExactSizeIterator for IntoIter<T> {
    fn len(&self) -> usize {
        self.heap.len
    }
}

/// An iterator that yields references to the items in a `PairingHeap` in arbitrary order.
///
/// Acquire through [`PairingHeap::iter`](struct.PairingHeap.html#method.iter).
pub struct Iter<'a, T: 'a + Ord> {
    iters: Vec<slice::Iter<'a, Node<T>>>,
    len: usize,
}

impl<'a, T: Ord> Clone for Iter<'a, T> {
    fn clone(&self) -> Self {
        Iter { iters: self.iters.clone(), len: self.len }
    }
}

impl<'a, T: Ord> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        loop {
            let node = match self.iters.last_mut() {
                None => return None,
                Some(iter) => iter.next(),
            };

            if let Some(node) = node {
                self.iters.push(node.children.iter());
                self.len -= 1;
                return Some(&node.item);
            }

            self.iters.pop();
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<'a, T: Ord> ExactSizeIterator for Iter<'a, T> {
    fn len(&self) -> usize {
        self.len
    }
}

/// A priority queue based on a pairing heap.
///
/// Like [`BinaryHeap`], `PairingHeap` is an implementation of a priority queue. Unlike
/// `BinaryHeap`, `PairingHeap` provides an `append` method whose runtime is asymptotically
/// optimal, at the cost of greater memory usage, slower iteration, and poor cache locality.
///
/// # Time Complexity
///
/// | Operation                      | Time Complexity        |
/// |--------------------------------|------------------------|
/// | [`append`](#method.append)     | `O(1)`                 |
/// | [`peek`](#method.peek)         | `O(1)`                 |
/// | [`pop`](#method.pop)           | `O(log n)` (amortized) |
/// | [`push`](#method.push)         | `O(1) `                |
/// | [`push_pop`](#method.push_pop) | `O(log n)` (amortized) |
/// | [`replace`](#method.replace)   | `O(log n)` (amortized) |
///
/// [`BinaryHeap`]: https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
#[derive(Clone)]
pub struct PairingHeap<T: Ord> {
    root: Option<Node<T>>,
    len: usize,
}

impl<T: Ord> PairingHeap<T> {
    /// Returns a new heap.
    pub fn new() -> Self {
        PairingHeap { root: None, len: 0 }
    }

    /// Checks if the heap is empty.
    pub fn is_empty(&self) -> bool {
        self.root.is_none()
    }

    /// Returns the number of items in the heap.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns an iterator that yields references to the items in the heap in arbitrary order.
    pub fn iter(&self) -> Iter<T> {
        Iter {
            iters: self.root.as_ref()
                .map(|root| unsafe { slice::from_raw_parts(root, 1) }.iter())
                .into_iter()
                .collect(),
            len: self.len,
        }
    }

    /// Returns a reference to the greatest item in the heap.
    ///
    /// Returns `None` if the heap is empty.
    pub fn peek(&self) -> Option<&T> {
        self.root.as_ref().map(|root| &root.item)
    }

    /// Pushes the given item onto the heap.
    pub fn push(&mut self, item: T) {
        self.len += 1;
        let node = Node { item: item, children: vec![] };

        match self.root {
            None => self.root = Some(node),
            Some(ref mut root) => root.merge(node),
        }
    }

    /// Moves the given heap's items into the heap, leaving the given heap empty.
    ///
    /// This is equivalent to, but likely to be faster than, the following:
    ///
    /// ```
    /// # let mut heap = pairing_heap::PairingHeap::<i32>::new();
    /// # let mut heap2 = pairing_heap::PairingHeap::new();
    /// heap.extend(heap2.drain());
    /// ```
    pub fn append(&mut self, other: &mut Self) {
        match self.root {
            None => mem::swap(self, other),
            Some(ref mut root) => if let Some(other_root) = other.root.take() {
                root.merge(other_root);
                self.len += mem::replace(&mut other.len, 0);
            },
        }
    }

    /// Pushes the given item onto the heap, then removes the greatest item in the heap and returns
    /// it.
    ///
    /// This method is equivalent to, but likely faster than, the following:
    ///
    /// ```
    /// # let mut heap = pairing_heap::PairingHeap::new();
    /// # let item = 0;
    /// heap.push(item);
    /// let max = heap.pop().unwrap();
    /// ```
    pub fn push_pop(&mut self, item: T) -> T {
        match self.root {
            Some(ref mut root) if item < root.item => root.replace_item(item),
            _ => item,
        }
    }

    /// Removes the greatest item in the heap, then pushes the given item onto the heap.
    ///
    /// Returns the item that was removed, or `None` if the heap was empty.
    ///
    /// This method is equivalent to, but likely faster than, the following:
    ///
    /// ```
    /// # let mut heap = pairing_heap::PairingHeap::new();
    /// # let item = 0;
    /// let max = heap.pop();
    /// heap.push(item);
    /// ```
    pub fn replace(&mut self, item: T) -> Option<T> {
        match self.root {
            None => { self.push(item); None }
            Some(ref mut root) => Some(root.replace_item(item)),
        }
    }

    /// Removes the greatest item in the heap and returns it.
    ///
    /// Returns `None` if the heap was empty.
    ///
    /// If a call to this method is immediately preceded by a call to [`push`], consider using
    /// [`push_pop`] instead. If a call to this method is immediately followed by a call to
    /// [`push`], consider using [`replace`] instead.
    ///
    /// [`push`]: #method.push
    /// [`push_pop`]: #method.push_pop
    /// [`replace`]: #method.replace
    pub fn pop(&mut self) -> Option<T> {
        self.root.take().map(|Node { item, children }| {
            self.len -= 1;
            self.root = Node::reduce(children);
            item
        })
    }

    /// Removes all items from the heap.
    pub fn clear(&mut self) {
        *self = Self::new();
    }

    /// Removes all items from the heap and returns an iterator that yields them in arbitrary
    /// order.
    ///
    /// All items are removed even if the iterator is not exhausted. However, the behavior of
    /// this method is unspecified if the iterator is leaked (e.g. via [`mem::forget`]).
    ///
    /// [`mem::forget`]: https://doc.rust-lang.org/std/mem/fn.forget.html
    pub fn drain(&mut self) -> Drain<T> {
        Drain { heap: self }
    }
}

impl<T: Ord + Debug> Debug for PairingHeap<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list().entries(self).finish()
    }
}

impl<T: Ord> Default for PairingHeap<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: Ord> Extend<T> for PairingHeap<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
        for item in items { self.push(item); }
    }
}

impl<T: Ord> std::iter::FromIterator<T> for PairingHeap<T> {
    fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
        let mut heap = Self::new();
        heap.extend(items);
        heap
    }
}

impl<T: Ord> IntoIterator for PairingHeap<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter { heap: self }
    }
}

impl<'a, T: Ord> IntoIterator for &'a PairingHeap<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}