1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
#[macro_use(quickcheck)]
extern crate quickcheck_macros;

use std::collections::HashMap;
use std::hash::Hash;
use std::iter::DoubleEndedIterator;
use std::ops::Index;
use std::vec::Vec;

type ExtractComparable<V, C> = fn(&V) -> C;

/// An `OrderedMap` is like a `std::collections::HashMap`,
/// but it is sorted according to the value in descending order.
/// It doesn't require the value of the map, `V`, to be comparable,
/// the comparision of the value is done on `C`,
/// which is the return value of `extract_comparable(&V)`.
pub struct OrderedMap<K, V, C>
{
    map: HashMap<K, V>,

    descending_pairs: Vec<(K, C)>,

    extract_comparable: ExtractComparable<V, C>,
}

pub struct DescendingKeys<'a, K: 'a, C: 'a>
{
    inner: std::slice::Iter<'a, (K, C)>
}

impl<'a, K: 'a, C: 'a> Iterator for DescendingKeys<'a, K, C>
{
    type Item = &'a K;

    fn next(&mut self) -> Option<Self::Item> {
        match self.inner.next() {
            None => None,
            Some((k, _)) => Some(k)
        }
    }
}

impl<'a, K: 'a, C: 'a> DoubleEndedIterator for DescendingKeys<'a, K, C>
{
    fn next_back(&mut self) -> Option<Self::Item> {
        match self.inner.next_back() {
            None => None,
            Some((k, _)) => Some(k)
        }
    }
}

pub struct DescendingValues<'a, K, V, C>
{
    map: &'a HashMap<K, V>,
    keys: DescendingKeys<'a, K, C>,
}

impl<'a, K, V, C> Iterator for DescendingValues<'a, K, V, C>
    where
        K: Eq + Hash,
{
    type Item = &'a V;

    fn next(&mut self) -> Option<Self::Item> {
        match self.keys.next() {
            None => None,
            Some(k) => Some(self.map.index(k))
        }
    }
}

impl<'a, K, V, C> DoubleEndedIterator for DescendingValues<'a, K, V, C>
    where
        K: Eq + Hash,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        match self.keys.next_back() {
            None => None,
            Some(k) => Some(self.map.index(k))
        }
    }
}

pub struct DescendingItems<'a, K, V, C>
{
    map: &'a HashMap<K, V>,
    keys: DescendingKeys<'a, K, C>,
}

impl<'a, K, V, C> Iterator for DescendingItems<'a, K, V, C>
    where
        K: Eq + Hash,
{
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        match self.keys.next() {
            None => None,
            Some(k) => Some((k, self.map.index(k)))
        }
    }
}

impl<'a, K, V, C> DoubleEndedIterator for DescendingItems<'a, K, V, C>
    where
        K: Eq + Hash,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        match self.keys.next_back() {
            None => None,
            Some(k) => Some((k, self.map.index(k)))
        }
    }
}

impl<'a, K: 'a, V: 'a, C: 'a> OrderedMap<K, V, C>
    where
        K: Eq + Hash + Copy,
        C: PartialOrd
{
    /// The function `extract_comparable` is used to convert the value of type `&V`
    /// to something comparable of type `C`
    pub fn new(extract_comparable: ExtractComparable<V, C>) -> Self
    {
        OrderedMap {
            map: HashMap::new(),
            descending_pairs: vec![],
            extract_comparable,
        }
    }

    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Keys of this map in descending order
    pub fn descending_keys(&'a self) -> DescendingKeys<'a, K, C>
    {
        DescendingKeys { inner: self.descending_pairs.iter() }
    }

    /// Values of this map in descending order
    pub fn descending_values(&'a self) -> DescendingValues<'a, K, V, C>
    {
        DescendingValues {
            map: &self.map,
            keys: self.descending_keys(),
        }
    }

    /// (K, V) pairs of this map in descending order
    pub fn descending_items(&'a self) -> DescendingItems<'a, K, V, C>
    {
        DescendingItems {
            map: &self.map,
            keys: self.descending_keys(),
        }
    }

    fn insert_into_pairs(&mut self, k: K, c: C) {
        let mut insert_index = None;
        for (i, (_ek, ec)) in self.descending_pairs.iter().enumerate() {
            if &c >= ec {
                insert_index = Some(i);
                break;
            }
        }
        let idx = match insert_index {
            None => self.descending_pairs.len(),
            Some(i) => i
        };
        self.descending_pairs.insert(idx, (k, c));
    }


    /// Insert a new key-value pair to the map,
    /// the old value is returned as `Option<V>`
    pub fn insert(&mut self, k: K, v: V) -> Option<V> {
        let new_c = (self.extract_comparable)(&v);
        match self.map.insert(k, v) {
            None => {
                self.insert_into_pairs(k, new_c);
                None
            }
            Some(v) => {
                remove_from_pairs(&mut self.descending_pairs, &k);
                self.insert_into_pairs(k, new_c);
                Some(v)
            }
        }
    }

    /// Remove a key-value pair from the map
    pub fn remove(&mut self, k: &K) -> Option<V> {
        match self.map.remove(k) {
            None => None,
            Some(v) => {
                remove_from_pairs(&mut self.descending_pairs, k);
                Some(v)
            }
        }
    }
}

fn remove_from_pairs<K, C>(pairs: &mut Vec<(K, C)>, k: &K) -> bool
    where
        K: Eq
{
    let mut removed = false;
    for i in 0..pairs.len() {
        if pairs[i].0 == *k {
            pairs.remove(i);
            removed = true;
            break;
        }
    }
    removed
}

#[cfg(test)]
mod tests {
    use std::collections::HashMap;

    use super::OrderedMap;

    fn to_comparable(t: &(f32, f64)) -> f32 {
        t.0
    }

    #[quickcheck]
    fn descending_order(kvs: Vec<(i32, (f32, f64))>) -> bool {
        let empty = kvs.is_empty();

        let ks: Vec<i32> = kvs.iter().map(|(k, _)| k.clone()).collect();
        let vs: Vec<(f32, f64)> = kvs.iter().map(|(_, v)| v.clone()).collect();

        let mut map = OrderedMap::new(to_comparable);

        for (k, v) in ks.iter().zip(vs.iter()) {
            map.insert(k.clone(), v.clone());
        }

        let mut tuples: Vec<(i32, f32)> = ks.iter().zip(vs.iter())
            .map(|(k, v)| (k.clone(), to_comparable(v)))
            .collect();
        let mut count = HashMap::new();
        for k in ks.iter() {
            count.insert(k, 0);
        }
        for k in ks.iter() {
            count.insert(k, count.get(k).unwrap() + 1);
        }
        let mut i = 0;
        for _ in 0..tuples.len() {
            if i < tuples.len() {
                let (k, _c) = tuples[i];
                let cnt = count.get_mut(&k).unwrap();
                if *cnt > 1 {
                    tuples.remove(i);
                    *cnt = *cnt - 1;
                } else {
                    i = i + 1;
                }
            } else {
                break;
            }
        }
        tuples.sort_by(|(_, c1), (_, c2)| c1.partial_cmp(c2).unwrap());
        tuples.reverse();

        let truth_keys: Vec<i32> = tuples.iter().map(|(k, _)| k.clone()).collect();

        let have_keys: Vec<i32> = map.descending_keys().map(|x| x.clone()).collect();

        let property = truth_keys == have_keys;

        let safe1 = empty || !truth_keys.is_empty();

        property && safe1
    }

    #[quickcheck]
    fn same_length(kvs: Vec<(i32, (f32, f64))>) -> bool {
        let ks: Vec<i32> = kvs.iter().map(|(k, _)| k.clone()).collect();
        let vs: Vec<(f32, f64)> = kvs.iter().map(|(_, v)| v.clone()).collect();

        let mut map = OrderedMap::new(to_comparable);

        for (k, v) in ks.iter().zip(vs.iter()) {
            map.insert(k.clone(), v.clone());
        }

        map.map.len() == map.descending_keys().collect::<Vec<_>>().len()
    }

    #[quickcheck]
    fn same_keys(kvs: Vec<(i32, (f32, f64))>) -> bool {
        let ks: Vec<i32> = kvs.iter().map(|(k, _)| k.clone()).collect();
        let vs: Vec<(f32, f64)> = kvs.iter().map(|(_, v)| v.clone()).collect();

        let mut map = OrderedMap::new(to_comparable);

        for (k, v) in ks.iter().zip(vs.iter()) {
            map.insert(k.clone(), v.clone());
        }

        let mut a = map.descending_keys().map(|x| x.clone()).collect::<Vec<_>>();
        a.sort();

        let mut b = map.map.keys().map(|x| x.clone()).collect::<Vec<_>>();
        b.sort();

        let mut ks = ks;
        ks.sort();
        ks.dedup();

        a == b && b == ks
    }

    #[quickcheck]
    fn insert_then_remove_all_is_empty(kvs: Vec<(i32, (f32, f64))>, other_keys: Vec<i32>) -> bool {
        let ks: Vec<i32> = kvs.iter().map(|(k, _)| k.clone()).collect();
        let vs: Vec<(f32, f64)> = kvs.iter().map(|(_, v)| v.clone()).collect();

        let mut map = OrderedMap::new(to_comparable);

        for (k, v) in ks.iter().zip(vs.iter()) {
            map.insert(k.clone(), v.clone());
        }

        for k in ks.iter() {
            map.remove(k);
        }

        let a = 0 == map.map.len() && 0 == map.descending_keys().collect::<Vec<_>>().len();

        for k in other_keys.iter() {
            map.remove(k);
        }

        let b = 0 == map.map.len() && 0 == map.descending_keys().collect::<Vec<_>>().len();

        a && b
    }

    #[quickcheck]
    fn insert_then_remove_is_identity(kvs: Vec<(u32, (f32, f64))>, new_v: (f32, f64)) -> bool {
        let ks: Vec<u32> = kvs.iter().map(|(k, _)| k.clone()).collect();
        let vs: Vec<(f32, f64)> = kvs.iter().map(|(_, v)| v.clone()).collect();

        let mut map = OrderedMap::new(to_comparable);

        for (k, v) in ks.iter().zip(vs.iter()) {
            map.insert(k.clone(), v.clone());
        }

        let old_map = map.map.clone();
        let old_keys =
            map.descending_keys().map(|k| k.clone()).collect::<Vec<u32>>();

        // create a unique key
        let k: u32 = ks.iter().sum();
        let k: u32 = k + 1;
        map.insert(k.clone(), new_v);
        map.remove(&k);

        let new_map = map.map.clone();
        let new_keys = map.descending_keys().map(|k| k.clone()).collect::<Vec<_>>();

        old_map == new_map && old_keys == new_keys
    }
}