1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
use std::mem::ManuallyDrop;
use std::sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard};

use crate::{
    Buffer, BufferCreator, CommandQueueOptions, Context, Device, DeviceType, Kernel, KernelOpArg,
    KernelOperation, MemConfig, MutVecOrSlice, Output, Program, VecOrSlice, Waitlist,
    Work, NumberTyped,
};

use crate::ll::{
    list_devices_by_type, list_platforms, BufferReadEvent, ClCommandQueue, ClContext, ClDeviceID,
    ClEvent, ClKernel, ClMem, ClNumber, ClProgram, CommandQueueProperties, CommandQueuePtr,
    DevicePtr, KernelArg,
};

#[derive(Debug)]
pub struct Session {
    _device: ManuallyDrop<ClDeviceID>,
    _program: ManuallyDrop<ClProgram>,
    _context: ManuallyDrop<ClContext>,
    _queue: ManuallyDrop<Arc<RwLock<ClCommandQueue>>>,
    _unconstructable: (),
}

unsafe impl Send for Session {}
unsafe impl Sync for Session {}

impl Session {
    pub fn create_with_devices<'a, D>(
        devices: D,
        src: &str,
        cq_props: Option<CommandQueueProperties>,
    ) -> Output<Vec<Session>>
    where
        D: Into<VecOrSlice<'a, Device>>,
    {
        let devices: Vec<Device> = devices.into().to_vec();
        unsafe {
            let context = ClContext::create(devices.as_slice())?;
            let mut sessions: Vec<Session> = Vec::with_capacity(devices.len());
            for device in devices.iter() {
                let device = ClDeviceID::unchecked_new(device.device_ptr());
                let mut program = ClProgram::create_with_source(&context, src)?;
                program.build(devices.as_slice())?;

                let queue = ClCommandQueue::create(&context, &device, cq_props)?;
                let session = Session {
                    _device: ManuallyDrop::new(device),
                    _context: ManuallyDrop::new(context.clone()),
                    _program: ManuallyDrop::new(program.clone()),
                    _queue: ManuallyDrop::new(Arc::new(RwLock::new(queue))),
                    _unconstructable: (),
                };
                sessions.push(session);
            }
            Ok(sessions)
        }
    }

    pub fn create(src: &str, cq_props: Option<CommandQueueProperties>) -> Output<Vec<Session>> {
        let platforms = list_platforms()?;
        let mut devices: Vec<Device> = Vec::new();
        for platform in platforms.iter() {
            let platform_devices: Vec<Device> = list_devices_by_type(platform, DeviceType::ALL)
                .map(|ll_devices| ll_devices.into_iter().map(|d| Device::new(d)).collect())?;
            devices.extend(platform_devices);
        }
        Session::create_with_devices(devices, src, cq_props)
    }

    pub fn context(&self) -> Context {
        Context::from_low_level_context(self.low_level_context()).unwrap()
    }

    pub fn device(&self) -> Device {
        Device::new(self.low_level_device().clone())
    }

    pub fn program(&self) -> Program {
        unsafe { Program::from_low_level_program(self.low_level_program()).unwrap() }
    }

    pub fn read_queue(&self) -> RwLockReadGuard<ClCommandQueue> {
        self._queue.read().unwrap()
    }

    pub fn write_queue(&self) -> RwLockWriteGuard<ClCommandQueue> {
        self._queue.write().unwrap()
    }

    pub fn low_level_device(&self) -> &ClDeviceID {
        &*self._device
    }

    pub fn low_level_context(&self) -> &ClContext {
        &self._context
    }

    pub fn low_level_program(&self) -> &ClProgram {
        &self._program
    }

    pub fn create_copy(&self) -> Output<Session> {
        let cloned_device = self._device.clone();
        let cloned_context = self._context.clone();
        let cloned_program = self._program.clone();
        let ll_queue = self._queue.read().unwrap();
        let copied_queue = unsafe { ll_queue.create_copy()? };

        Ok(Session {
            _device: cloned_device,
            _context: cloned_context,
            _program: cloned_program,
            _queue: ManuallyDrop::new(Arc::new(RwLock::new(copied_queue))),
            _unconstructable: (),
        })
    }

    /// Creates a ClKernel from the session's program.
    pub fn create_kernel(&self, kernel_name: &str) -> Output<Kernel> {
        unsafe {
            let ll_kernel = ClKernel::create(self.low_level_program(), kernel_name)?;
            Ok(Kernel::new(ll_kernel, self.program()))
        }
    }

    /// Creates a ClMem object in the given context, with the given buffer creator
    /// (either a length or some data). This function uses the BufferCreator's implementation
    /// to retrieve the appropriate MemConfig.
    pub fn create_buffer<T: ClNumber, B: BufferCreator<T>>(
        &self,
        buffer_creator: B,
    ) -> Output<Buffer> {
        let cfg = buffer_creator.mem_config();
        Buffer::create_from_low_level_context(
            self.low_level_context(),
            buffer_creator,
            cfg.host_access,
            cfg.kernel_access,
            cfg.mem_location,
        )
    }

    /// Creates a ClMem object in the given context, with the given buffer creator
    /// (either a length or some data) and a given MemConfig.
    pub fn create_buffer_with_config<T: ClNumber, B: BufferCreator<T>>(
        &self,
        buffer_creator: B,
        mem_config: MemConfig,
    ) -> Output<Buffer> {
        Buffer::create_from_low_level_context(
            self.low_level_context(),
            buffer_creator,
            mem_config.host_access,
            mem_config.kernel_access,
            mem_config.mem_location,
        )
    }

    /// This function copies data from the host buffer into the device mem buffer. The host
    /// buffer must be a mutable slice or a vector to ensure the safety of the read_Buffer
    /// operation.
    pub fn sync_write_buffer<'a, T: ClNumber, H: Into<VecOrSlice<'a, T>>>(
        &self,
        buffer: &Buffer,
        host_buffer: H,
        opts: Option<CommandQueueOptions>,
    ) -> Output<()> {
        buffer.number_type().type_check(T::number_type())?;
        let mut queue = self.write_queue();
        let mut buffer_lock = buffer.write_lock();
        unsafe {
            let event: ClEvent = queue.write_buffer(&mut (*buffer_lock), host_buffer, opts)?;
            event.wait()
        }
    }

    /// This function copies data from a device mem buffer into a host buffer. The host
    /// buffer must be a mutable slice or a vector. For the moment the device mem must also
    /// be passed as mutable; I don't trust OpenCL.
    pub fn sync_read_buffer<'a, T: ClNumber, H: Into<MutVecOrSlice<'a, T>>>(
        &self,
        buffer: &Buffer,
        host_buffer: H,
        opts: Option<CommandQueueOptions>,
    ) -> Output<Option<Vec<T>>> {
        buffer.number_type().type_check(T::number_type())?;
        let mut queue = self.write_queue();

        let buffer_lock = buffer.read_lock();
        unsafe {
            let mut event: BufferReadEvent<T> =
                queue.read_buffer(&(*buffer_lock), host_buffer, opts)?;
            event.wait()
        }
    }

    /// This function enqueues a CLKernel into a command queue
    ///
    /// # Safety
    /// If the ClKernel is not in a usable state or any of the Kernel's dependent object
    /// has been release, or the kernel belongs to a different session, or the ClKernel's
    /// pointer is a null pointer, then calling this function will cause undefined behavior.
    pub fn sync_enqueue_kernel(
        &self,
        kernel: &Kernel,
        work: &Work,
        opts: Option<CommandQueueOptions>,
    ) -> Output<()> {
        let mut queue = self.write_queue();
        let mut kernel_lock = kernel.write_lock();
        unsafe {
            let event = queue.enqueue_kernel(&mut (*kernel_lock), work, opts)?;
            event.wait()
        }
    }

    pub fn execute_sync_kernel_operation<'a, T>(
        &self,
        mut kernel_op: KernelOperation<'a, T>,
    ) -> Output<()>
    where
        T: ClNumber + KernelArg,
    {
        unsafe {
            let kernel = self.create_kernel(kernel_op.name())?;
            let work = kernel_op.work()?;
            let command_queue_opts = kernel_op.command_queue_opts();
            let mut mem_locks: Vec<RwLockWriteGuard<ClMem>> = Vec::new();
            for (arg_index, arg) in kernel_op.mut_args().iter_mut().enumerate() {
                match arg {
                    KernelOpArg::Num(ref mut num) => kernel.set_arg(arg_index, num)?,
                    KernelOpArg::Buffer(ref buffer) => {
                        let mut mem = buffer.write_lock();
                        kernel.set_arg(arg_index, &mut *mem)?;
                        mem_locks.push(mem);
                    }
                }
            }

            let mut queue = self.write_queue();
            let mut ll_kernel = kernel.write_lock();
            let event = queue.enqueue_kernel(&mut ll_kernel, &work, command_queue_opts)?;
            // Wait until queued mems finish being accessed.
            event.wait()?;
            // then drop locks.
            std::mem::drop(mem_locks);
            Ok(())
        }
    }
}

impl Clone for Session {
    fn clone(&self) -> Session {
        Session {
            _device: self._device.clone(),
            _context: self._context.clone(),
            _program: self._program.clone(),
            _queue: self._queue.clone(),
            _unconstructable: (),
        }
    }
}

impl PartialEq for Session {
    fn eq(&self, other: &Self) -> bool {
        unsafe {
            let self_queue_ptr = self.read_queue().command_queue_ptr();
            let other_queue_ptr = other.read_queue().command_queue_ptr();
            std::ptr::eq(self_queue_ptr, other_queue_ptr)
        }
    }
}

impl Eq for Session {}

impl Drop for Session {
    fn drop(&mut self) {
        unsafe {
            ManuallyDrop::drop(&mut self._queue);
            ManuallyDrop::drop(&mut self._program);
            ManuallyDrop::drop(&mut self._context);
            ManuallyDrop::drop(&mut self._device);
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{testing, Buffer, Kernel, Session, Work};

    const SRC: &'static str = "__kernel void test(__global int *data) {
        data[get_global_id(0)] += 1;
    }";

    fn new_session() -> Session {
        testing::get_session(SRC)
    }

    #[test]
    fn session_can_be_created_with_src() {
        let _session = Session::create(SRC, None).unwrap_or_else(|e| {
            panic!("Failed to create session: {:?}", e);
        });
    }

    #[test]
    fn session_can_be_created_with_src_and_slice_of_devices() {
        let devices = testing::get_all_devices();
        assert_ne!(devices.len(), 0);
        let _session = Session::create_with_devices(&devices[..], SRC, None).unwrap_or_else(|e| {
            panic!("Failed to create session with slice of devices: {:?}", e);
        });
    }

    #[test]
    fn session_can_be_created_with_src_and_vec_of_devices() {
        let devices = testing::get_all_devices();
        assert_ne!(devices.len(), 0);
        let _session = Session::create_with_devices(devices, SRC, None).unwrap_or_else(|e| {
            panic!("Failed to create session with vec of devices: {:?}", e);
        });
    }

    #[test]
    fn session_implements_clone() {
        let _other: Session = new_session().clone();
    }

    #[test]
    fn session_implementation_of_fmt_debug_works() {
        let session = new_session();
        let formatted = format!("{:?}", session);
        assert!(
            formatted.starts_with("Session"),
            "Formatted did not start with the correct value. Got: {:?}",
            formatted
        );
    }

    #[test]
    fn session_create_copy_copies_command_queue_and_clones_the_rest() {
        let session = new_session();

        let session_copy = session.create_copy().unwrap_or_else(|e| {
            panic!("Failed to create_copy of session: {:?}", e);
        });
        let s1_queue = session.read_queue();
        let s2_queue = session_copy.read_queue();
        assert_ne!(*s1_queue, *s2_queue);
        assert_eq!(
            session.low_level_context(),
            session_copy.low_level_context()
        );
        assert_eq!(
            session.low_level_program(),
            session_copy.low_level_program()
        );
        assert_ne!(session, session_copy);
    }

    #[test]
    fn session_can_create_kernel() {
        let src = "__kernel void add_one_i32(__global int *i) { *i += 1; }";
        let session = testing::get_session(src);
        let _kernel: Kernel = session.create_kernel("add_one_i32").unwrap_or_else(|e| {
            panic!("Failed to create kernel for session: {:?}", e);
        });
    }

    #[test]
    fn session_can_create_buffer_from_data() {
        let data: Vec<i32> = vec![0, 1, 2, 3, 4, 5, 6, 7];
        let session = new_session();
        let _buffer: Buffer = session
            .create_buffer(&data[..])
            .unwrap_or_else(|e| panic!("Session failed to create buffer: {:?}", e));
    }

    #[test]
    fn session_can_create_buffer_of_a_given_length() {
        let session = new_session();
        let buffer: Buffer = session
            .create_buffer::<i32, usize>(100)
            .unwrap_or_else(|e| panic!("Session failed to create buffer: {:?}", e));
        assert_eq!(buffer.len(), 100);
    }

    #[test]
    fn session_can_write_and_read_buffer() {
        let data: Vec<i32> = vec![0, 1, 2, 3, 4, 5, 6, 7];
        let session = new_session();
        let buffer: Buffer = session
            .create_buffer(&data[..])
            .unwrap_or_else(|e| panic!("Session failed to create buffer: {:?}", e));
        assert_eq!(buffer.len(), 8);
        let () = session
            .sync_write_buffer(&buffer, &data[..], None)
            .unwrap_or_else(|e| {
                panic!("Failed to write buffer: {:?}", e);
            });
        let data2 = vec![0i32; 8];
        let data3 = session
            .sync_read_buffer(&buffer, data2, None)
            .unwrap_or_else(|e| {
                panic!("Failed to write buffer: {:?}", e);
            })
            .unwrap();

        assert_eq!(data3.len(), 8);
        assert_eq!(data3, data);
    }

    #[test]
    fn session_sync_enqueue_kernel_and_read_buffer() {
        let data: Vec<i32> = vec![0, 1, 2, 3, 4, 5, 6, 7];
        let session = new_session();
        let buffer: Buffer = session
            .create_buffer(&data[..])
            .unwrap_or_else(|e| panic!("Session failed to create buffer: {:?}", e));
        assert_eq!(buffer.len(), 8);
        let () = session
            .sync_write_buffer(&buffer, &data[..], None)
            .unwrap_or_else(|e| {
                panic!("Failed to write buffer: {:?}", e);
            });
        let kernel: Kernel = session.create_kernel("test").unwrap();
        let mut buffer_lock = buffer.write_lock();
        unsafe { kernel.set_arg(0, &mut (*buffer_lock)).unwrap() };
        let work = Work::new(data.len());
        session.sync_enqueue_kernel(&kernel, &work, None).unwrap();
        std::mem::drop(buffer_lock);

        let data2 = vec![0i32; 8];
        let data3 = session
            .sync_read_buffer(&buffer, data2, None)
            .unwrap_or_else(|e| {
                panic!("Failed to write buffer: {:?}", e);
            })
            .unwrap();

        assert_eq!(data3.len(), 8);
        let expected_data: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8];
        assert_eq!(data3, expected_data);
    }
}