1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
use std::collections::HashMap;
use std::error::Error;
use rayon::prelude::*;
use rten::ctc::{CtcDecoder, CtcHypothesis};
use rten::{Dimension, FloatOperators, Model, Operators, RunOptions};
use rten_imageproc::{bounding_rect, BoundingRect, Line, Point, Polygon, Rect, RotatedRect};
use rten_tensor::prelude::*;
use rten_tensor::{NdTensor, NdTensorView, Tensor};
mod log;
pub mod page_layout;
mod text_items;
#[cfg(target_arch = "wasm32")]
mod wasm_api;
use page_layout::{find_connected_component_rects, find_text_lines, line_polygon};
pub use text_items::{TextChar, TextItem, TextLine, TextWord};
/// Return the smallest multiple of `factor` that is >= `val`.
fn round_up<
T: Copy
+ std::ops::Add<T, Output = T>
+ std::ops::Sub<T, Output = T>
+ std::ops::Rem<T, Output = T>,
>(
val: T,
factor: T,
) -> T {
let rem = val % factor;
(val + factor) - rem
}
// nb. The "E" before "ABCDE" should be the EUR symbol.
const DEFAULT_ALPHABET: &str = " 0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~EABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/// The value used to represent fully black pixels in OCR input images
/// prepared by [prepare_image].
const BLACK_VALUE: f32 = -0.5;
/// Convert a CHW image into a greyscale image.
///
/// This function is intended to approximately match torchvision's RGB =>
/// greyscale conversion when using `torchvision.io.read_image(path,
/// ImageReadMode.GRAY)`, which is used when training models with greyscale
/// inputs. torchvision internally uses libpng's `png_set_rgb_to_gray`.
///
/// `normalize_pixel` is a function applied to each greyscale pixel value before
/// it is written into the output tensor.
fn greyscale_image<F: Fn(f32) -> f32>(
img: NdTensorView<f32, 3>,
normalize_pixel: F,
) -> NdTensor<f32, 3> {
let [chans, height, width] = img.shape();
assert!(
chans == 1 || chans == 3 || chans == 4,
"expected greyscale, RGB or RGBA input image"
);
let mut output = NdTensor::zeros([1, height, width]);
let used_chans = chans.min(3); // For RGBA images, only RGB channels are used
let chan_weights: &[f32] = if chans == 1 {
&[1.]
} else {
// ITU BT.601 weights for RGB => luminance conversion. These match what
// torchvision uses. See also https://stackoverflow.com/a/596241/434243.
&[0.299, 0.587, 0.114]
};
let mut out_lum_chan = output.slice_mut([0]);
for y in 0..height {
for x in 0..width {
let mut pixel = 0.;
for c in 0..used_chans {
pixel += img[[c, y, x]] * chan_weights[c];
}
out_lum_chan[[y, x]] = normalize_pixel(pixel);
}
}
output
}
/// Prepare an image for use with [detect_words] and [recognize_text_lines].
///
/// This converts an input CHW image with values in the range 0-1 to a greyscale
/// image with values in the range `BLACK_VALUE` to `BLACK_VALUE + 1`.
fn prepare_image(image: NdTensorView<f32, 3>) -> NdTensor<f32, 3> {
greyscale_image(image, |pixel| pixel + BLACK_VALUE)
}
/// Detect text words in a greyscale image.
///
/// `image` is a greyscale CHW image with values in the range `ZERO_VALUE` to
/// `ZERO_VALUE + 1`. `model` is a model which takes an NCHW input tensor and
/// returns a binary segmentation mask predicting whether each pixel is part of
/// a text word or not. The image is padded and resized to the model's expected
/// input size before performing detection.
///
/// The result is an unsorted list of the oriented bounding rectangles of
/// connected components (ie. text words) in the mask.
fn detect_words(
image: NdTensorView<f32, 3>,
model: &Model,
debug: bool,
) -> Result<Vec<RotatedRect>, Box<dyn Error>> {
let input_id = model
.input_ids()
.first()
.copied()
.ok_or("model has no inputs")?;
let input_shape = model
.node_info(input_id)
.and_then(|info| info.shape())
.ok_or("model does not specify expected input shape")?;
let [img_chans, img_height, img_width] = image.shape();
// Add batch dim
let image = image.reshaped([1, img_chans, img_height, img_width]);
let (in_height, in_width) = match input_shape[..] {
[_, _, Dimension::Fixed(h), Dimension::Fixed(w)] => (h, w),
_ => {
return Err("failed to get model dims".into());
}
};
// Pad small images to the input size of the text detection model. This is
// needed because simply scaling small images up to a fixed size may produce
// very large or distorted text that is hard for detection/recognition to
// process.
//
// Padding images is however inefficient because it means that we are
// potentially feeding a lot of blank pixels into the text detection model.
// It would be better if text detection were able to accept variable-sized
// inputs, within some limits.
let pad_bottom = (in_height as i32 - img_height as i32).max(0);
let pad_right = (in_width as i32 - img_width as i32).max(0);
let grey_img = if pad_bottom > 0 || pad_right > 0 {
let pads = &[0, 0, 0, 0, 0, 0, pad_bottom, pad_right];
image.pad(pads.into(), BLACK_VALUE)?
} else {
image.as_dyn().to_tensor()
};
// Resize images to the text detection model's input size.
let resized_grey_img = grey_img.resize_image([in_height, in_width])?;
// Run text detection model to compute a probability mask indicating whether
// each pixel is part of a text word or not.
let text_mask: Tensor<f32> = model
.run_one(
(&resized_grey_img).into(),
if debug {
Some(RunOptions {
timing: true,
verbose: false,
..Default::default()
})
} else {
None
},
)?
.try_into()?;
// Resize probability mask to original input size and apply threshold to get a
// binary text/not-text mask.
let text_mask = text_mask
.slice((
..,
..,
..(in_height - pad_bottom as usize),
..(in_width - pad_right as usize),
))
.resize_image([img_height, img_width])?;
let threshold = 0.2;
let binary_mask = text_mask.map(|prob| if *prob > threshold { 1i32 } else { 0 });
// Distance to expand bounding boxes by. This is useful when the model is
// trained to assign a positive label to pixels in a smaller area than the
// ground truth, which may be done to create separation between adjacent
// objects.
let expand_dist = 3.;
let word_rects =
find_connected_component_rects(binary_mask.slice([0, 0]).nd_view(), expand_dist);
Ok(word_rects)
}
/// Details about a text line needed to prepare the input to the text
/// recognition model.
#[derive(Clone)]
struct TextRecLine {
/// Index of this line in the list of lines found in the image.
index: usize,
/// Region of the image containing this line.
region: Polygon,
/// Width to resize this line to.
resized_width: u32,
}
/// Prepare an NCHW tensor containing a batch of text line images, for input
/// into the text recognition model.
///
/// For each line in `lines`, the line region is extracted from `image`, resized
/// to a fixed `output_height` and a line-specific width, then copied to the
/// output tensor. Lines in the batch can have different widths, so the output
/// is padded on the right side to a common width of `output_width`.
fn prepare_text_line_batch(
image: &NdTensorView<f32, 3>,
lines: &[TextRecLine],
page_rect: Rect,
output_height: usize,
output_width: usize,
) -> NdTensor<f32, 4> {
let mut output = NdTensor::zeros([lines.len(), 1, output_height, output_width]);
output.apply(|_| BLACK_VALUE);
// Page rect adjusted to only contain coordinates that are valid for
// indexing into the input image.
let page_index_rect = page_rect.adjust_tlbr(0, 0, -1, -1);
for (group_line_index, line) in lines.iter().enumerate() {
let grey_chan = image.slice([0]);
let line_rect = line.region.bounding_rect();
let mut line_img =
NdTensor::zeros([line_rect.height() as usize, line_rect.width() as usize]);
line_img.apply(|_| BLACK_VALUE);
for in_p in line.region.fill_iter() {
let out_p = Point::from_yx(in_p.y - line_rect.top(), in_p.x - line_rect.left());
if !page_index_rect.contains_point(in_p) || !page_index_rect.contains_point(out_p) {
continue;
}
line_img[[out_p.y as usize, out_p.x as usize]] =
grey_chan[[in_p.y as usize, in_p.x as usize]];
}
let resized_line_img = line_img
.reshaped([1, 1, line_img.size(0), line_img.size(1)])
.resize_image([output_height, line.resized_width as usize])
.unwrap();
let resized_line_img: NdTensorView<f32, 2> =
resized_line_img.squeezed().try_into().unwrap();
output
.slice_mut((group_line_index, 0, .., ..(line.resized_width as usize)))
.copy_from(&resized_line_img);
}
output
}
/// Return the bounding rectangle of the slice of a polygon with X coordinates
/// between `min_x` and `max_x` inclusive.
fn polygon_slice_bounding_rect(
poly: Polygon<i32, &[Point]>,
min_x: i32,
max_x: i32,
) -> Option<Rect> {
poly.edges()
.filter_map(|e| {
let e = e.rightwards();
// Filter out edges that don't overlap [min_x, max_x].
if (e.start.x < min_x && e.end.x < min_x) || (e.start.x > max_x && e.end.x > max_x) {
return None;
}
// Truncate edge to [min_x, max_x].
let trunc_edge_start = e
.to_f32()
.y_for_x(min_x as f32)
.map(|y| Point::from_yx(y.round() as i32, min_x))
.unwrap_or(e.start);
let trunc_edge_end = e
.to_f32()
.y_for_x(max_x as f32)
.map(|y| Point::from_yx(y.round() as i32, max_x))
.unwrap_or(e.end);
Some(Line::from_endpoints(trunc_edge_start, trunc_edge_end))
})
.fold(None, |bounding_rect, e| {
let edge_br = e.bounding_rect();
bounding_rect.map(|br| br.union(edge_br)).or(Some(edge_br))
})
}
/// Method used to decode sequence model outputs to a sequence of labels.
///
/// See [CtcDecoder] for more details.
#[derive(Copy, Clone, Default)]
pub enum DecodeMethod {
#[default]
Greedy,
BeamSearch {
width: u32,
},
}
#[derive(Clone, Default)]
pub struct RecognitionOpt {
pub debug: bool,
/// Method used to decode character sequence outputs to character values.
pub decode_method: DecodeMethod,
}
/// Input and output from recognition for a single text line.
struct LineRecResult {
/// Input to the recognition model.
line: TextRecLine,
/// Length of input sequences to recognition model, padded so that all
/// lines in batch have the same length.
rec_input_len: usize,
/// Length of output sequences from recognition model, used as input to
/// CTC decoding.
ctc_input_len: usize,
/// Output label sequence produced by CTC decoding.
ctc_output: CtcHypothesis,
}
/// Combine information from the input and output of text line recognition
/// to produce [TextLine]s containing character sequences and bounding boxes
/// for each line.
///
/// Entries in the result may be `None` if no text was recognized for a line.
fn text_lines_from_recognition_results(results: &[LineRecResult]) -> Vec<Option<TextLine>> {
results
.iter()
.map(|result| {
let line_rect = result.line.region.bounding_rect();
let x_scale_factor = (line_rect.width() as f32) / (result.line.resized_width as f32);
// Calculate how much the recognition model downscales the image
// width. We assume this will be an integer factor, or close to it
// if the input width is not an exact multiple of the downscaling
// factor.
let downsample_factor =
(result.rec_input_len as f32 / result.ctc_input_len as f32).round() as u32;
let steps = result.ctc_output.steps();
let text_line: Vec<TextChar> = steps
.iter()
.enumerate()
.filter_map(|(i, step)| {
// X coord range of character in line recognition input image.
let start_x = step.pos * downsample_factor;
let end_x = if let Some(next_step) = steps.get(i + 1) {
next_step.pos * downsample_factor
} else {
result.line.resized_width
};
// Map X coords to those of the input image.
let [start_x, end_x] = [start_x, end_x]
.map(|x| line_rect.left() + (x as f32 * x_scale_factor) as i32);
// Since the recognition input is padded, it is possible to
// get predicted characters in the output with positions
// that correspond to the padding region, and thus are
// outside the bounds of the original line. Ignore these.
if start_x >= line_rect.right() {
return None;
}
let char = DEFAULT_ALPHABET
.chars()
.nth((step.label - 1) as usize)
.unwrap_or('?');
Some(TextChar {
char,
rect: polygon_slice_bounding_rect(
result.line.region.borrow(),
start_x,
end_x,
)
.expect("invalid X coords"),
})
})
.collect();
if text_line.is_empty() {
None
} else {
Some(TextLine::new(text_line))
}
})
.collect()
}
/// Encapsulates validation and execution of the text line recognition model.
struct RecognitionModel {
model: Model,
input_id: usize,
input_shape: Vec<Dimension>,
output_id: usize,
}
impl RecognitionModel {
/// Validate that a model has the expected inputs and outputs for
/// a text recognition model and wrap it as a [RecognitionModel].
fn from_model(model: Model) -> Result<RecognitionModel, Box<dyn Error>> {
let input_id = model
.input_ids()
.first()
.copied()
.ok_or("recognition model has no inputs")?;
let input_shape = model
.node_info(input_id)
.and_then(|info| info.shape())
.ok_or("recognition model does not specify input shape")?;
let output_id = model
.output_ids()
.first()
.copied()
.ok_or("recognition model has no outputs")?;
Ok(RecognitionModel {
model,
input_id,
input_shape: input_shape.into_iter().collect(),
output_id,
})
}
/// Return the expected height of input line images.
fn input_height(&self) -> u32 {
match self.input_shape[2] {
Dimension::Fixed(size) => size.try_into().unwrap(),
Dimension::Symbolic(_) => 50,
}
}
/// Run text recognition on an NCHW batch of text line images, and return
/// a `[batch, seq, label]` tensor of class probabilities.
fn run(&self, input: NdTensor<f32, 4>) -> Result<NdTensor<f32, 3>, Box<dyn Error>> {
let input: Tensor<f32> = input.into();
let [output] =
self.model
.run_n(&[(self.input_id, (&input).into())], [self.output_id], None)?;
let mut rec_sequence: NdTensor<f32, 3> = output.try_into()?;
// Transpose from [seq, batch, class] => [batch, seq, class]
rec_sequence.permute([1, 0, 2]);
Ok(rec_sequence)
}
}
/// Recognize text lines in an image.
///
/// `image` is a CHW greyscale image with values in the range `ZERO_VALUE` to
/// `ZERO_VALUE + 1`. `lines` is a list of detected text lines, where each line
/// is a sequence of word rects. `model` is a recognition model which accepts an
/// NCHW tensor of greyscale line images and outputs a `[sequence, batch, label]`
/// tensor of log probabilities of character classes, which must be converted to
/// a character sequence using CTC decoding.
///
/// Entries in the result can be `None` if no text was found in a line.
fn recognize_text_lines(
image: NdTensorView<f32, 3>,
lines: &[Vec<RotatedRect>],
model: &RecognitionModel,
opts: RecognitionOpt,
) -> Result<Vec<Option<TextLine>>, Box<dyn Error>> {
let RecognitionOpt {
debug,
decode_method,
} = opts;
let [_, img_height, img_width] = image.shape();
let page_rect = Rect::from_hw(img_height as i32, img_width as i32);
// Compute width to resize a text line image to, for a given height.
fn resized_line_width(orig_width: i32, orig_height: i32, height: i32) -> u32 {
// Min/max widths for resized line images. These must match the PyTorch
// `HierTextRecognition` dataset loader.
let min_width = 10.;
let max_width = 800.;
let aspect_ratio = orig_width as f32 / orig_height as f32;
(height as f32 * aspect_ratio).max(min_width).min(max_width) as u32
}
// Group lines into batches which will have similar widths after resizing
// to a fixed height.
//
// It is more efficient to run recognition on multiple lines at once, but
// all line images in a batch must be padded to an equal length. Some
// computation is wasted on shorter lines in the batch. Choosing batches
// such that all line images have a similar width reduces this wastage.
// There is a trade-off between maximizing the batch size and minimizing
// the variance in width of images in the batch.
let rec_img_height = model.input_height();
let mut line_groups: HashMap<i32, Vec<TextRecLine>> = HashMap::new();
for (line_index, word_rects) in lines.iter().enumerate() {
let line_rect = bounding_rect(word_rects.iter())
.expect("line has no words")
.integral_bounding_rect();
let resized_width =
resized_line_width(line_rect.width(), line_rect.height(), rec_img_height as i32);
let group_width = round_up(resized_width, 50);
line_groups
.entry(group_width as i32)
.or_default()
.push(TextRecLine {
index: line_index,
region: Polygon::new(line_polygon(word_rects)),
resized_width,
});
}
// Split large line groups up into smaller batches that can be processed
// in parallel.
let max_lines_per_group = 20;
let line_groups: Vec<(i32, Vec<TextRecLine>)> = line_groups
.into_iter()
.flat_map(|(group_width, lines)| {
lines
.chunks(max_lines_per_group)
.map(|chunk| (group_width, chunk.to_vec()))
.collect::<Vec<_>>()
})
.collect();
// Run text recognition on batches of lines.
let mut line_rec_results: Vec<LineRecResult> = line_groups
.into_par_iter()
.flat_map(|(group_width, lines)| {
if debug {
println!(
"Processing group of {} lines of width {}",
lines.len(),
group_width,
);
}
let rec_input = prepare_text_line_batch(
&image,
&lines,
page_rect,
rec_img_height as usize,
group_width as usize,
);
// TODO - Propagate errors from recognition model to caller.
let rec_output = model.run(rec_input).expect("recognition failed");
let ctc_input_len = rec_output.shape()[1];
// Apply CTC decoding to get the label sequence for each line.
lines
.into_iter()
.enumerate()
.map(|(group_line_index, line)| {
let decoder = CtcDecoder::new();
let input_seq = rec_output.slice([group_line_index]);
let ctc_output = match decode_method {
DecodeMethod::Greedy => decoder.decode_greedy(input_seq),
DecodeMethod::BeamSearch { width } => decoder.decode_beam(input_seq, width),
};
LineRecResult {
line,
rec_input_len: group_width as usize,
ctc_input_len,
ctc_output,
}
})
.collect::<Vec<_>>()
})
.collect();
// The recognition outputs are in a different order than the inputs due to
// batching and parallel processing. Re-sort them into input order.
line_rec_results.sort_by_key(|result| result.line.index);
let text_lines = text_lines_from_recognition_results(&line_rec_results);
Ok(text_lines)
}
/// Configuration for an [OcrEngine] instance.
#[derive(Default)]
pub struct OcrEngineParams {
/// Model used to detect text words in the image.
pub detection_model: Option<Model>,
/// Model used to recognize lines of text in the image.
pub recognition_model: Option<Model>,
/// Enable debug logging.
pub debug: bool,
pub decode_method: DecodeMethod,
}
/// Detects and recognizes text in images.
///
/// OcrEngine uses machine learning models to detect text, analyze layout
/// and recognize text in an image.
pub struct OcrEngine {
detection_model: Option<Model>,
recognition_model: Option<RecognitionModel>,
debug: bool,
decode_method: DecodeMethod,
}
/// Input image for OCR analysis. Instances are created using
/// [OcrEngine::prepare_input]
pub struct OcrInput {
/// CHW tensor with normalized pixel values in [BLACK_VALUE, BLACK_VALUE + 1.].
pub(crate) image: NdTensor<f32, 3>,
}
impl OcrEngine {
/// Construct a new engine from a given configuration.
pub fn new(params: OcrEngineParams) -> Result<OcrEngine, Box<dyn Error>> {
let recognition_model = params
.recognition_model
.map(RecognitionModel::from_model)
.transpose()?;
Ok(OcrEngine {
detection_model: params.detection_model,
recognition_model,
debug: params.debug,
decode_method: params.decode_method,
})
}
/// Preprocess an image for use with other methods of the engine.
///
/// The input `image` should be a CHW tensor with values in the range 0-1
/// and either 1 (grey), 3 (RGB) or 4 (RGBA) channels.
pub fn prepare_input(&self, image: NdTensorView<f32, 3>) -> Result<OcrInput, Box<dyn Error>> {
Ok(OcrInput {
image: prepare_image(image),
})
}
/// Detect text words in an image.
///
/// Returns an unordered list of the oriented bounding rectangles of each
/// word found.
pub fn detect_words(&self, input: &OcrInput) -> Result<Vec<RotatedRect>, Box<dyn Error>> {
let Some(detection_model) = self.detection_model.as_ref() else {
return Err("Detection model not loaded".into());
};
detect_words(input.image.view(), detection_model, self.debug)
}
/// Perform layout analysis to group words into lines and sort them in
/// reading order.
///
/// `words` is an unordered list of text word rectangles found by
/// [OcrEngine::detect_words]. The result is a list of lines, in reading
/// order. Each line is a sequence of word bounding rectangles, in reading
/// order.
pub fn find_text_lines(
&self,
_input: &OcrInput,
words: &[RotatedRect],
) -> Vec<Vec<RotatedRect>> {
find_text_lines(words)
}
/// Recognize lines of text in an image.
///
/// `lines` is an ordered list of the text line boxes in an image,
/// produced by [OcrEngine::find_text_lines].
///
/// The output is a list of [TextLine]s corresponding to the input image
/// regions. Entries can be `None` if no text was found in a given line.
pub fn recognize_text(
&self,
input: &OcrInput,
lines: &[Vec<RotatedRect>],
) -> Result<Vec<Option<TextLine>>, Box<dyn Error>> {
let Some(recognition_model) = self.recognition_model.as_ref() else {
return Err("Recognition model not loaded".into());
};
recognize_text_lines(
input.image.view(),
lines,
recognition_model,
RecognitionOpt {
debug: self.debug,
decode_method: self.decode_method,
},
)
}
/// Convenience API that extracts all text from an image as a single string.
pub fn get_text(&self, input: &OcrInput) -> Result<String, Box<dyn Error>> {
let word_rects = self.detect_words(input)?;
let line_rects = self.find_text_lines(input, &word_rects);
let text = self
.recognize_text(input, &line_rects)?
.into_iter()
.filter_map(|line| line.map(|l| l.to_string()))
.collect::<Vec<_>>()
.join("\n");
Ok(text)
}
}
#[cfg(test)]
mod tests {
use std::error::Error;
use rten::model_builder::{ModelBuilder, OpType};
use rten::ops::{MaxPool, Transpose};
use rten::Dimension;
use rten::Model;
use rten_imageproc::{fill_rect, BoundingRect, Rect, RectF, RotatedRect};
use rten_tensor::prelude::*;
use rten_tensor::{NdTensor, Tensor};
use super::{OcrEngine, OcrEngineParams};
/// Generate a dummy CHW input image for OCR processing.
///
/// The result is an RGB image which is black except for one line containing
/// `n_words` white-filled rects.
fn gen_test_image(n_words: usize) -> NdTensor<f32, 3> {
let mut image = NdTensor::zeros([3, 100, 200]);
for word_idx in 0..n_words {
for chan_idx in 0..3 {
fill_rect(
image.slice_mut([chan_idx]),
Rect::from_tlhw(30, (word_idx * 70) as i32, 20, 50),
1.,
);
}
}
image
}
/// Create a fake text detection model.
///
/// Takes a CHW input tensor with values in `[-0.5, 0.5]` and adds a +0.5
/// bias to produce an output "probability map".
fn fake_detection_model() -> Model {
let mut mb = ModelBuilder::new();
let input_id = mb.add_value(
"input",
Some(&[
Dimension::Symbolic("batch".to_string()),
Dimension::Fixed(1),
// The real model uses larger inputs (800x600). The fake uses
// smaller inputs to make tests run faster.
Dimension::Fixed(200),
Dimension::Fixed(100),
]),
);
mb.add_input(input_id);
let output_id = mb.add_value("output", None);
mb.add_output(output_id);
let bias = Tensor::from_scalar(0.5);
let bias_id = mb.add_float_constant(&bias);
mb.add_operator(
"add",
OpType::Add,
&[Some(input_id), Some(bias_id)],
&[output_id],
);
let model_data = mb.finish();
Model::load(&model_data).unwrap()
}
/// Create a fake text recognition model.
///
/// This takes an NCHW input with C=1, H=64 and returns an output with
/// shape `[W / 4, N, C]`. In the real model the last dimension is the
/// log-probability of each class label. In this fake we just re-interpret
/// each column of the input as a one-hot vector of probabilities.
fn fake_recognition_model() -> Model {
let mut mb = ModelBuilder::new();
let input_id = mb.add_value(
"input",
Some(&[
Dimension::Symbolic("batch".to_string()),
Dimension::Fixed(1),
Dimension::Fixed(64),
Dimension::Symbolic("seq".to_string()),
]),
);
mb.add_input(input_id);
// MaxPool to scale width by 1/4: NCHW => NCHW/4
let pool_out = mb.add_value("max_pool_out", None);
mb.add_operator(
"max_pool",
OpType::MaxPool(MaxPool {
kernel_size: [1, 4],
padding: [0, 0, 0, 0].into(),
strides: [1, 4],
}),
&[Some(input_id)],
&[pool_out],
);
// Squeeze to remove the channel dim: NCHW/4 => NHW/4
let squeeze_axes = Tensor::from_vec(vec![1]);
let squeeze_axes_id = mb.add_int_constant(&squeeze_axes);
let squeeze_out = mb.add_value("squeeze_out", None);
mb.add_operator(
"squeeze",
OpType::Squeeze,
&[Some(pool_out), Some(squeeze_axes_id)],
&[squeeze_out],
);
// Transpose: NHW/4 => W/4NH
let transpose_out = mb.add_value("transpose_out", None);
mb.add_operator(
"transpose",
OpType::Transpose(Transpose {
perm: Some(vec![2, 0, 1]),
}),
&[Some(squeeze_out)],
&[transpose_out],
);
mb.add_output(transpose_out);
let model_data = mb.finish();
Model::load(&model_data).unwrap()
}
/// Return expected word locations for an image generated by
/// `gen_test_image(3)`.
///
/// The output boxes are slightly larger than in input image. This is
/// because the real detection model is trained to predict boxes that are
/// slightly smaller than the ground truth, in order to create a gap between
/// adjacent boxes. The connected components in model outputs are then
/// expanded in post-processing to recover the correct boxes.
fn expected_word_boxes() -> Vec<RectF> {
let [top, height] = [27, 25];
[
Rect::from_tlhw(top, -3, height, 56).to_f32(),
Rect::from_tlhw(top, 66, height, 57).to_f32(),
Rect::from_tlhw(top, 136, height, 57).to_f32(),
]
.into()
}
#[test]
fn test_ocr_engine_prepare_input() -> Result<(), Box<dyn Error>> {
let image = gen_test_image(3 /* n_words */);
let engine = OcrEngine::new(OcrEngineParams {
detection_model: None,
recognition_model: None,
..Default::default()
})?;
let input = engine.prepare_input(image.view())?;
let [chans, height, width] = input.image.shape();
assert_eq!(chans, 1);
assert_eq!(width, image.size(2));
assert_eq!(height, image.size(1));
Ok(())
}
#[test]
fn test_ocr_engine_detect_words() -> Result<(), Box<dyn Error>> {
let n_words = 3;
let image = gen_test_image(n_words);
let engine = OcrEngine::new(OcrEngineParams {
detection_model: Some(fake_detection_model()),
recognition_model: None,
..Default::default()
})?;
let input = engine.prepare_input(image.view())?;
let words = engine.detect_words(&input)?;
assert_eq!(words.len(), n_words);
let mut boxes: Vec<RectF> = words
.into_iter()
.map(|rotated_rect| rotated_rect.bounding_rect())
.collect();
boxes.sort_by_key(|b| [b.top() as i32, b.left() as i32]);
assert_eq!(boxes, expected_word_boxes());
Ok(())
}
#[test]
fn test_ocr_engine_recognize_lines() -> Result<(), Box<dyn Error>> {
let mut image = NdTensor::zeros([1, 64, 32]);
// Fill a single row of the input image.
//
// The dummy recognition model treats each column of the input as a
// one-hot vector of character class probabilities. Pre-processing of
// the input will shift values from [0, 1] to [-0.5, 0.5]. CTC decoding
// of the output will ignore class 0 (as it represents a CTC blank)
// and repeated characters.
//
// Filling a single input row with "1"s will produce a single char
// output where the char's index in the alphabet is the row index - 1.
// ie. Filling the first row produces " ", the second row "0" and so on,
// using the default alphabet.
image
.slice_mut::<2, _>((.., 2, ..))
.iter_mut()
.for_each(|x| *x = 1.);
let engine = OcrEngine::new(OcrEngineParams {
detection_model: None,
recognition_model: Some(fake_recognition_model()),
..Default::default()
})?;
let input = engine.prepare_input(image.view())?;
// Create a dummy input line with a single word which fills the image.
let mut line_regions: Vec<Vec<RotatedRect>> = Vec::new();
line_regions.push(
[Rect::from_tlhw(0, 0, image.shape()[1] as i32, image.shape()[2] as i32).to_f32()]
.map(RotatedRect::from_rect)
.into(),
);
let lines = engine.recognize_text(&input, &line_regions)?;
assert_eq!(lines.len(), line_regions.len());
assert!(lines.get(0).is_some());
let line = lines[0].as_ref().unwrap();
assert_eq!(line.to_string(), "0");
Ok(())
}
}