1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*! # nyx-space

[Nyx](https://en.wikipedia.org/wiki/Nyx) is a high fidelity, fast, reliable and validated astrodynamical toolkit library written in Rust.

The ultimate goal of this library is to provide a high-speed and scalable replacement for [General Mission Analysis Tool (GMAT)](http://gmat.sourceforge.net/doc/R2018a/help.html).

# Tutorial
The [tutorial](tutorial/index.html) is a great place to start learning how to use nyx. The target audience is astrodynamics & aerospace engineers.

If you are new to Rust, learn the basics on the ["Rust By Example" interactive tutorial](https://doc.rust-lang.org/stable/rust-by-example/).
Using nyx isn't hard, despite the code of the library being quite complicated.

# Features
Unless specified otherwise in the documentation of specific functions, all vectors and matrices are [statically allocated](https://discourse.nphysics.org/t/statically-typed-matrices-whose-size-is-a-multiple-or-another-one/460/4).

## Propagation
- Propagation with different Runge Kutta methods (validated in GMAT)
- Convenient and explicit definition of the dynamics for a simulation
- Propagation to different stopping conditions
## Dynamical models
- Multibody dynamics using XB files
- Finite burns with fuel depletion (including low thrust / ion propulsion)
- Sub-Optimal Control of continuous thrust (e.g. Ruggerio, Petropoulos/Q-law)
- Solar radiation pressure modeling
- Basic drag models (cannonball)
## Orbit determination
- Statistical Orbit Determination: Classical and Extended Kalman Filter
- Orbit Determination with multibody dynamics
- Smoothing and iterations of CKFs
- Square Root Information Filer (SRIF)
- An easy-to-use OD user interface
- State noise compensation (SNC)
## Celestial computations
- Orbital state manipulation (from GMAT source code and validated in GMAT)
- Planetary and Solar eclipse and visibility computation
- Light-time corrections and abberations

# Usage
Put this in your `Cargo.toml`:

```toml
[dependencies]
nyx-space = "0.0.20"
```

And add the following to your crate root:

```rust
extern crate nyx_space as nyx;
```
*/

/// Provides all the propagators / integrators available in `nyx`.
pub mod propagators;

/// Provides several dynamics used for orbital mechanics and attitude dynamics, which can be elegantly combined.
///
/// # Simple two body propagation
/// ```
/// extern crate nalgebra as na;
/// extern crate hifitime;
/// extern crate nyx_space as nyx;
/// use hifitime::{Epoch, SECONDS_PER_DAY};
/// use nyx::celestia::{bodies, Cosm, State};
/// use nyx::dynamics::celestial::CelestialDynamics;
/// use nyx::dynamics::Dynamics;
/// use nyx::propagators::error_ctrl::RSSStepPV;
/// use nyx::propagators::{PropOpts, Propagator};
///
/// let cosm = Cosm::from_xb("./de438s");
/// let eme2k = cosm.frame("EME2000");
///
/// let dt = Epoch::from_mjd_tai(21_545.0);
/// let initial_state = State::cartesian(-2436.45, -2436.45, 6891.037, 5.088611, -5.088611, 0.0, dt, eme2k);
///
/// println!("Initial state:\n{0}\n{0:o}\n", initial_state);
///
/// let prop_time = 24.0 * 3_600.0;
/// let accuracy = 1e-12;
/// let min_step = 0.1;
/// let max_step = 60.0;
///
/// let rslt = State::cartesian(
///         -5_971.194_376_797_643,
///         3_945.517_912_574_178_4,
///         2_864.620_957_744_429_2,
///         0.049_083_101_605_507_95,
///         -4.185_084_125_817_658,
///         5.848_947_462_472_877,
///         Epoch::from_mjd_tai(21_546.0),
///         eme2k,
/// );
///
/// let mut dynamics = CelestialDynamics::two_body(initial_state);
/// let mut prop = Propagator::default(
///     &mut dynamics,
///     &PropOpts::with_adaptive_step(min_step, max_step, accuracy, RSSStepPV {}),
/// );
/// prop.until_time_elapsed(prop_time);
///
/// assert_eq!(prop.dynamics.state, rslt, "two body prop failed");
///
/// println!("Final state:\n{0}\n{0:o}", prop.dynamics.state);
/// ```
///
/// # Multibody propagation of a Halo orbit
/// Multibody propagation is **an order of magnitude faster** in nyx than in GMAT.
/// In nyx, the following function is executed in 0.14 seconds in release mode.
/// ```
/// extern crate nalgebra as na;
/// extern crate hifitime;
/// extern crate nyx_space as nyx;

/// use hifitime::Epoch;
/// use na::Vector6;
/// use nyx::celestia::{bodies, Cosm, State};
/// use nyx::dynamics::celestial::CelestialDynamics;
/// use nyx::propagators::*;
/// use nyx::utils::rss_state_errors;
///
/// let prop_time = 24.0 * 3_600.0;
///
/// let cosm = Cosm::from_xb("./de438s");
/// let eme2k = cosm.frame("EME2000");
///
/// let start_time = Epoch::from_gregorian_tai_at_midnight(2020, 1, 1);
///
/// let halo_rcvr = State::cartesian(
///     333_321.004_516,
///     -76_134.198_887,
///     -20_873.831_939,
///     0.257_153_712,
///     0.930_284_066,
///     0.346_177,
///     start_time,
///     eme2k,
/// );
///
/// // GMAT data
/// let rslt = Vector6::new(
///     345_350.664_030_479,
///     5_930.672_047_088,
///     7_333.283_779_286,
///     2.129_819_943e-2,
///     9.566_789_568e-1,
///     3.028_175_811e-1,
/// );
///
/// let bodies = vec![bodies::EARTH_MOON, bodies::SUN, bodies::JUPITER_BARYCENTER];
/// let mut dynamics = CelestialDynamics::new(halo_rcvr, bodies, &cosm);
///
/// let mut prop = Propagator::default(&mut dynamics, &PropOpts::default());
/// prop.until_time_elapsed(prop_time);
/// let (err_r, err_v) = rss_state_errors(&prop.state_vector(), &rslt);
///
/// println!(
///     "RSS errors:\tpos = {:.5e} km\tvel = {:.5e} km/s\ninit\t{}\nfinal\t{}",
///     err_r, err_v, halo_rcvr, prop.dynamics.state
/// );
/// assert!(err_r < 1e-3, format!("multi body failed in position: {:.5e}", err_r));
/// assert!(err_v < 1e-6, format!("multi body failed in velocity: {:.5e}", err_v));
/// ```
pub mod dynamics;

/// Provides the solar system planets, and state and (later) ephemeride management.
///
/// # State creation and management
/// ```
/// extern crate hifitime;
/// extern crate nyx_space as nyx;
///
/// use hifitime::Epoch;
/// use nyx::celestia::{Cosm, State};
/// let mut cosm = Cosm::from_xb("./de438s");
/// // We're actually going to use the GMAT value for Earth GM (de438s has a slightly different value).
/// cosm.mut_gm_for_frame("EME2000", 398_600.441_5);
/// // In this case, we're creating these states around a Geoid which is Earth.
/// let eme2k = cosm.frame("EME2000");
/// let dt = Epoch::from_mjd_tai(21545.0);
/// let cart = State::cartesian(
///         5_946.673_548_288_958,
///         1_656.154_606_023_661,
///         2_259.012_129_598_249,
///         -3.098_683_050_943_824,
///         4.579_534_132_135_011,
///         6.246_541_551_539_432,
///         dt,
///         eme2k,
/// );
///
/// let kep = State::keplerian(
///        7_712.186_117_895_041,
///        0.158_999_999_999_999_95,
///        53.75369,
///        1.998_632_864_211_17e-5,
///        359.787_880_000_004,
///        25.434_003_407_751_188,
///        dt,
///        eme2k
/// );
/// // We can check whether two states are equal.
/// if cart != kep {
///     dbg!("{:?}", cart-kep);
///     panic!("This won't happen");
/// }
/// // Of more interest, we can fetch specific orbital elements.
/// println!("sma = {} km   inc = {} degrees", cart.sma(), cart.inc());
/// // Note that the state data is stored as X, Y, Z, VX, VY, VZ.
/// // Hence, the following print statement may display some rounded values despite
/// // being created with fixed values. GMAT has the same "issue"
/// // (but `nyx` won't change your script).
/// println!("ecc = {} km   RAAN = {} degrees", kep.ecc(), cart.raan());
/// ```
pub mod celestia;

/// Include utility functions shared by different modules, and which may be useful to engineers.
pub mod utils;

/// Provides all the input/output needs for this library, including loading of SPICE kernels, and gravity potential files.
pub mod io;

/// Provides all the orbital determination tools.
pub mod od;

pub mod tutorial;

#[macro_use]
extern crate log;
#[macro_use]
extern crate prost_derive;
extern crate hifitime;
extern crate nalgebra as na;

/// Re-export of hifitime
pub mod time {
    pub use hifitime::*;
}

/// Re-export nalgebra
pub mod dimensions {
    pub use na::base::*;
}