1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use crate::dimensions::Vector3;
use crate::time::Epoch;
use celestia::{Frame, State};
use std::f64::consts::FRAC_PI_2 as half_pi;

/// The `ThrustControl` trait handles control laws, optimizations, and other such methods for
/// controlling the overall thrust direction when tied to a `Spacecraft`. For delta V control,
/// tie the DeltaVctrl to a MissionArc.
pub trait ThrustControl
where
    Self: Clone + Sized,
{
    /// Returns a unit vector corresponding to the thrust direction in the inertial frame.
    fn direction(&self, state: &State) -> Vector3<f64>;

    /// Returns a number between [0;1] corresponding to the engine throttle level.
    /// For example, 0 means coasting, i.e. no thrusting, and 1 means maximum thrusting.
    fn throttle(&self, state: &State) -> f64;

    /// Prepares the controller for the next maneuver (called from set_state of the dynamics).
    fn next(&mut self, state: &State);
}

#[derive(Clone)]
pub struct NoThrustControl {}
impl ThrustControl for NoThrustControl {
    fn direction(&self, _: &State) -> Vector3<f64> {
        unimplemented!();
    }
    fn throttle(&self, _: &State) -> f64 {
        unimplemented!();
    }
    fn next(&mut self, _: &State) {
        unimplemented!();
    }
}

/// Goals used for sub-optimal controls
#[derive(Copy, Clone, Debug)]
pub enum Achieve {
    Sma { target: f64, tol: f64 },
    Ecc { target: f64, tol: f64 },
    Inc { target: f64, tol: f64 },
    Raan { target: f64, tol: f64 },
    Aop { target: f64, tol: f64 },
}

impl Achieve {
    pub fn achieved(&self, state: &State) -> bool {
        match *self {
            Achieve::Sma { target, tol } => (state.sma() - target).abs() < tol,
            Achieve::Ecc { target, tol } => (state.ecc() - target).abs() < tol,
            Achieve::Inc { target, tol } => (state.inc() - target).abs() < tol,
            Achieve::Raan { target, tol } => (state.raan() - target).abs() < tol,
            Achieve::Aop { target, tol } => (state.aop() - target).abs() < tol,
        }
    }
}

/// Mnvr defined a single maneuver. Direction MUST be in the VNC frame (Velocity / Normal / Cross).
/// It may be used with a maneuver scheduler.
#[derive(Copy, Clone, Debug)]
pub struct Mnvr {
    /// Start epoch of the maneuver
    pub start: Epoch,
    /// End epoch of the maneuver
    pub end: Epoch,
    /// Thrust level, if 1.0 use all thruster available at full power
    pub thrust_lvl: f64,
    /// Direction of the thrust in the VNC frame
    pub vector: Vector3<f64>,
}

impl Mnvr {
    /// Creates an instantaneous maneuver whose vector is the deltaV.
    pub fn instantaneous(dt: Epoch, vector: Vector3<f64>) -> Self {
        let mut end_dt = dt;
        end_dt.mut_add_secs(1e-6);
        Self {
            start: dt,
            end: end_dt,
            thrust_lvl: 1.0,
            vector,
        }
    }
}

/// Ruggiero defines the closed loop control law from IEPC 2011-102
#[derive(Clone, Debug)]
pub struct Ruggiero {
    /// Stores the objectives
    objectives: Vec<Achieve>,
    init_state: State,
    achieved: bool,
}

/// The Ruggiero is a locally optimal control of a state for specific osculating elements.
/// WARNING: Objectives must be in degrees!
impl Ruggiero {
    pub fn new(objectives: Vec<Achieve>, initial: State) -> Self {
        Self {
            objectives,
            init_state: initial,
            achieved: false,
        }
    }

    fn weighting(init: f64, target: f64, osc: f64, tol: f64) -> f64 {
        if (osc - target).abs() < tol {
            0.0
        } else {
            // Let's add the tolerance to the initial value if we want to keep a parameter fixed (i.e. target and initial are equal)
            (target - osc)
                / (target
                    - if (init - target).abs() < tol {
                        init + tol
                    } else {
                        init
                    })
                .abs()
        }
    }

    /// Returns whether the control law has achieved all goals
    pub fn achieved(&self, state: &State) -> bool {
        for obj in &self.objectives {
            if !obj.achieved(state) {
                return false;
            }
        }
        true
    }
}

impl ThrustControl for Ruggiero {
    fn direction(&self, osc: &State) -> Vector3<f64> {
        if self.achieved {
            Vector3::zeros()
        } else {
            let mut ctrl = Vector3::zeros();
            for obj in &self.objectives {
                match *obj {
                    Achieve::Sma { target, tol } => {
                        let weight = Self::weighting(self.init_state.sma(), target, osc.sma(), tol);
                        if weight.abs() > 0.0 {
                            let num = osc.ecc() * osc.ta().to_radians().sin();
                            let denom = 1.0 + osc.ecc() * osc.ta().to_radians().cos();
                            let alpha = num.atan2(denom);
                            // TODO: Add efficiency
                            ctrl += unit_vector_from_angles(alpha, 0.0) * weight;
                        }
                    }
                    Achieve::Ecc { target, tol } => {
                        let weight = Self::weighting(self.init_state.ecc(), target, osc.ecc(), tol);
                        if weight.abs() > 0.0 {
                            let num = osc.ta().to_radians().sin();
                            let denom = osc.ta().to_radians().cos() + osc.ea().to_radians().cos();
                            let alpha = num.atan2(denom);
                            // TODO: Add efficiency
                            ctrl += unit_vector_from_angles(alpha, 0.0) * weight;
                        }
                    }
                    Achieve::Inc { target, tol } => {
                        let weight = Self::weighting(self.init_state.inc(), target, osc.inc(), tol);
                        if weight.abs() > 0.0 {
                            let beta =
                                half_pi.copysign(((osc.ta() + osc.aop()).to_radians()).cos());
                            // TODO: Add efficiency
                            ctrl += unit_vector_from_angles(0.0, beta) * weight;
                        }
                    }
                    Achieve::Raan { target, tol } => {
                        // BUG: https://gitlab.com/chrisrabotin/nyx/issues/83
                        let weight =
                            Self::weighting(self.init_state.raan(), target, osc.raan(), tol);
                        if weight.abs() > 0.0 {
                            let beta =
                                half_pi.copysign(((osc.ta() + osc.aop()).to_radians()).sin());
                            // TODO: Add efficiency
                            ctrl += unit_vector_from_angles(0.0, beta) * weight;
                        }
                    }
                    Achieve::Aop { target, tol } => {
                        let weight = Self::weighting(self.init_state.aop(), target, osc.aop(), tol);
                        let oe2 = 1.0 - osc.ecc().powi(2);
                        let e3 = osc.ecc().powi(3);
                        // Compute the optimal true anomaly for in-plane thrusting
                        let sqrt_val = (0.25 * (oe2 / e3).powi(2) + 1.0 / 27.0).sqrt();
                        let opti_ta_alpha = ((oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
                            - (-oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
                            - 1.0 / osc.ecc())
                        .acos();
                        // Compute the optimal true anomaly for out of plane thrusting
                        let opti_ta_beta = (-osc.ecc() * osc.aop().to_radians().cos()).acos()
                            - osc.aop().to_radians();
                        // And choose whether to do an in-plane or out of plane thrust
                        if (osc.ta().to_radians() - opti_ta_alpha).abs()
                            < (osc.ta().to_radians() - opti_ta_beta).abs()
                        {
                            // In plane
                            let p = osc.semi_parameter();
                            let (sin_ta, cos_ta) = osc.ta().to_radians().sin_cos();
                            let alpha = (-p * cos_ta).atan2((p + osc.rmag()) * sin_ta);
                            ctrl += unit_vector_from_angles(alpha, 0.0) * weight;
                        } else {
                            // Out of plane
                            let beta = half_pi
                                .copysign(-(osc.ta().to_radians() + osc.aop().to_radians()).sin())
                                * osc.inc().to_radians().cos();
                            ctrl += unit_vector_from_angles(0.0, beta) * weight;
                        };
                    }
                }
            }
            // Return a normalized vector
            ctrl = if ctrl.norm() > 0.0 {
                ctrl / ctrl.norm()
            } else {
                ctrl
            };
            // Convert to inertial
            osc.dcm_to_inertial(Frame::RCN) * ctrl
        }
    }

    // Either thrust full power or not at all
    fn throttle(&self, osc: &State) -> f64 {
        if self.achieved {
            0.0
        } else {
            for obj in &self.objectives {
                match *obj {
                    Achieve::Sma { target, tol } => {
                        let weight = Self::weighting(self.init_state.sma(), target, osc.sma(), tol);
                        if weight.abs() > 0.0 {
                            return 1.0;
                        }
                    }
                    Achieve::Ecc { target, tol } => {
                        let weight = Self::weighting(self.init_state.ecc(), target, osc.ecc(), tol);
                        if weight.abs() > 0.0 {
                            return 1.0;
                        }
                    }
                    Achieve::Inc { target, tol } => {
                        let weight = Self::weighting(self.init_state.inc(), target, osc.inc(), tol);
                        if weight.abs() > 0.0 {
                            return 1.0;
                        }
                    }
                    Achieve::Raan { target, tol } => {
                        let weight =
                            Self::weighting(self.init_state.raan(), target, osc.raan(), tol);
                        if weight.abs() > 0.0 {
                            return 1.0;
                        }
                    }
                    Achieve::Aop { target, tol } => {
                        let weight = Self::weighting(self.init_state.aop(), target, osc.aop(), tol);
                        if weight.abs() > 0.0 {
                            return 1.0;
                        }
                    }
                }
            }
            0.0
        }
    }

    /// Update the state for the next iteration
    fn next(&mut self, osc: &State) {
        if self.throttle(osc) > 0.0 {
            if self.achieved {
                info!("enabling control: {:o}", osc);
            }
            self.achieved = false;
        } else {
            if !self.achieved {
                info!("disabling control: {:o}", osc);
            }
            self.achieved = true;
        }
    }
}

/// A controller for a set of pre-determined maneuvers.
#[derive(Clone, Debug)]
pub struct FiniteBurns {
    /// Maneuvers should be provided in chronological order, first maneuver first in the list
    pub mnvrs: Vec<Mnvr>,
    pub mnvr_no: usize,
}

impl FiniteBurns {
    /// Builds a schedule from the vector of maneuvers, must be provided in chronological order.
    pub fn from_mnvrs(mnvrs: Vec<Mnvr>) -> Self {
        Self { mnvrs, mnvr_no: 0 }
    }
}

impl ThrustControl for FiniteBurns {
    fn direction(&self, osc: &State) -> Vector3<f64> {
        // NOTE: We do not increment the mnvr number here. The power function is called first,
        // so we let that function handle starting and stopping of the maneuver.
        if self.mnvr_no >= self.mnvrs.len() {
            Vector3::zeros()
        } else {
            let next_mnvr = self.mnvrs[self.mnvr_no];
            if next_mnvr.start <= osc.dt {
                osc.dcm_to_inertial(Frame::VNC) * next_mnvr.vector
            } else {
                Vector3::zeros()
            }
        }
    }

    fn throttle(&self, osc: &State) -> f64 {
        if self.mnvr_no >= self.mnvrs.len() {
            0.0
        } else {
            let next_mnvr = self.mnvrs[self.mnvr_no];
            if next_mnvr.start <= osc.dt {
                next_mnvr.thrust_lvl
            } else {
                0.0
            }
        }
    }

    fn next(&mut self, osc: &State) {
        if self.mnvr_no < self.mnvrs.len() {
            let cur_mnvr = self.mnvrs[self.mnvr_no];
            if osc.dt >= cur_mnvr.end {
                self.mnvr_no += 1;
            }
        }
    }
}

fn unit_vector_from_angles(alpha: f64, beta: f64) -> Vector3<f64> {
    Vector3::new(
        alpha.sin() * beta.cos(),
        alpha.cos() * beta.cos(),
        beta.sin(),
    )
}

#[cfg(test)]
mod tests {
    use super::*;
    use celestia::Cosm;
    #[test]
    fn ruggiero_weight() {
        let mut cosm = Cosm::from_xb("./de438s");
        cosm.mut_gm_for_frame("EME2000", 398_600.433);
        let eme2k = cosm.frame("EME2000");
        let start_time = Epoch::from_gregorian_tai_at_midnight(2020, 1, 1);
        let orbit = State::keplerian(7378.1363, 0.01, 0.05, 0.0, 0.0, 1.0, start_time, eme2k);

        // Define the objectives
        let objectives = vec![
            Achieve::Sma {
                target: 42164.0,
                tol: 1.0,
            },
            Achieve::Ecc {
                target: 0.01,
                tol: 5e-5,
            },
        ];

        let ruggiero = Ruggiero::new(objectives, orbit);
        // 7301.597157 201.699933 0.176016 -0.202974 7.421233 0.006476 298.999726
        let osc = State::cartesian(
            7_303.253_461_441_64f64,
            127.478_714_816_381_75,
            0.111_246_193_227_445_4,
            -0.128_284_025_765_195_6,
            7.422_889_151_816_439,
            0.006_477_694_429_837_2,
            start_time,
            eme2k,
        );
        let expected = Vector3::new(
            -0.017_279_636_133_108_3,
            0.999_850_315_226_803,
            0.000_872_534_222_883_2,
        );

        let got = ruggiero.direction(&osc);

        println!("{}", expected - got);
        assert!(
            (expected - got).norm() < 1e-12,
            "incorrect direction computed"
        );
    }
}