1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
extern crate bytes;
extern crate petgraph;
extern crate prost;
use self::bytes::IntoBuf;
use self::petgraph::algo::astar;
use self::petgraph::prelude::*;
use super::cosm::prost::Message;
use super::frames::*;
use super::rotations::*;
use super::state::State;
use super::xb::ephem_interp::StateData::{EqualStates, VarwindowStates};
use super::xb::{Ephemeris, EphemerisContainer};
use super::SPEED_OF_LIGHT_KMS;
use crate::hifitime::{Epoch, SECONDS_PER_DAY};
use crate::na::Matrix3;
use std::collections::HashMap;
use std::error::Error;
use std::fmt;
use std::fs::File;
pub use std::io::Error as IoError;
use std::io::Read;
use std::time::Instant;
use utils::rotv;

/// Mass of the solar system from https://en.wikipedia.org/w/index.php?title=Special:CiteThisPage&page=Solar_System&id=905437334
pub const SS_MASS: f64 = 1.0014;
/// Mass of the Sun
pub const SUN_GM: f64 = 132_712_440_041.939_38;

/// Enable or not light time correction for the computation of the celestial states
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum LTCorr {
    /// No correction, i.e. assumes instantaneous propagation of photons
    None,
    /// Accounts for light-time correction. This is corresponds to CN in SPICE.
    LightTime,
    /// Accounts for light-time and stellar abberation where the solar system barycenter is the inertial frame. Corresponds to CN+S in SPICE.
    Abberation,
}

// Defines Cosm, from the Greek word for "world" or "universe".
pub struct Cosm {
    ephemerides: HashMap<i32, Ephemeris>,
    ephemerides_names: HashMap<String, i32>,
    frames: HashMap<String, Frame>,
    axb_names: HashMap<String, i32>,
    exb_map: Graph<i32, u8, Undirected>,
    axb_map: Graph<i32, u8, Undirected>,
    // Stores the rotations, cannot be in the map because Box<dyn T> si not clonable, and therefore cannot be used for A*
    axb_rotations: HashMap<i32, Box<dyn ParentRotation>>,
    j2k_nidx: NodeIndex<u32>,
}

impl fmt::Debug for Cosm {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Cosm with {} ephemerides", self.ephemerides.keys().len())
    }
}

#[derive(Debug)]
pub enum CosmError {
    ObjectIDNotFound(i32),
    ObjectNameNotFound(String),
    NoInterpolationData(i32),
    NoStateData(i32),
    /// No path was found to convert from the first center to the second
    DisjointFrameCenters(i32, i32),
    /// No path was found to convert from the first orientation to the second
    DisjointFrameOrientations(i32, i32),
}

impl fmt::Display for CosmError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "CosmError: {:?}", self)
    }
}

impl Error for CosmError {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        None
    }
}

impl Cosm {
    /// Builds a Cosm from the *XB files. Path should _not_ contain file extension. Panics if the files could not be loaded.
    pub fn from_xb(filename: &str) -> Cosm {
        Self::try_from_xb(filename)
            .unwrap_or_else(|_| panic!("could not open EXB file {}", filename))
    }

    /// Attempts to build a Cosm from the *XB files.
    pub fn try_from_xb(filename: &str) -> Result<Cosm, IoError> {
        let mut axb_map: Graph<i32, u8, Undirected> = Graph::new_undirected();
        let j2k_nidx = axb_map.add_node(0);

        let mut cosm = Cosm {
            ephemerides: HashMap::new(),
            ephemerides_names: HashMap::new(),
            frames: HashMap::new(),
            axb_names: HashMap::new(),
            exb_map: Graph::new_undirected(),
            axb_map,
            axb_rotations: HashMap::new(),
            j2k_nidx,
        };

        // Add J2000 as the main AXB reference frame
        let ssb2k = Frame::Celestial {
            axb_id: 0,
            exb_id: 0,
            gm: SS_MASS * SUN_GM,
            parent_axb_id: None,
            parent_exb_id: None,
        };

        cosm.exb_map.add_node(0);
        cosm.axb_names.insert("J2000".to_owned(), 0);
        cosm.frames
            .insert("solar system barycenter j2000".to_owned(), ssb2k);

        if let Some(err) = cosm.append_xb(filename) {
            return Err(err);
        }

        // Now, let's append the IAU frames as defined in
        // Celest Mech Dyn Astr (2018) 130:22
        // https://doi.org/10.1007/s10569-017-9805-5
        cosm.add_iau_frames();

        Ok(cosm)
    }

    pub fn append_xb(&mut self, filename: &str) -> Option<IoError> {
        let j2k_str = "j2000";
        match load_ephemeris(&(filename.to_string() + ".exb")) {
            Err(e) => Some(e),
            Ok(ephemerides) => {
                for ephem in &ephemerides {
                    let id = ephem.id.as_ref().unwrap();

                    self.ephemerides.insert(id.number, ephem.clone());
                    self.ephemerides_names.insert(id.name.clone(), id.number);

                    // TODO: Clone all of the frames and add their IAU fixed definitions

                    // Compute the exb_id.
                    let exb_id = ephem.ref_frame.clone().unwrap().number - 100_000;

                    // Add this EXB to the map, and link it to its parent
                    let this_node = self.exb_map.add_node(id.number);
                    let parent_node = match self.exbid_to_map_idx(exb_id) {
                        Ok(p) => p,
                        Err(e) => panic!(e),
                    };
                    // All edges are of value 1
                    self.exb_map.add_edge(parent_node, this_node, 1);

                    // Build the Geoid frames -- assume all frames are geoids if they have a GM parameter

                    // Ephemeris exists
                    match ephem.parameters.get("GM") {
                        Some(gm) => {
                            // It's a geoid, and we assume everything else is there
                            let flattening = match ephem.parameters.get("Flattening") {
                                Some(param) => param.value,
                                None => {
                                    if id.name == "Moon" {
                                        0.0012
                                    } else {
                                        0.0
                                    }
                                }
                            };
                            let equatorial_radius = match ephem.parameters.get("Equatorial radius")
                            {
                                Some(param) => param.value,
                                None => {
                                    if id.name == "Moon" {
                                        1738.1
                                    } else {
                                        0.0
                                    }
                                }
                            };
                            let semi_major_radius = match ephem.parameters.get("Equatorial radius")
                            {
                                Some(param) => {
                                    if id.name == "Earth Barycenter" {
                                        6378.1370
                                    } else {
                                        param.value
                                    }
                                }
                                None => equatorial_radius, // assume spherical if unspecified
                            };

                            // Let's now build the J2000 version of this body
                            let obj = Frame::Geoid {
                                axb_id: 0, // TODO: Get this from the EXB
                                exb_id: id.number,
                                gm: gm.value,
                                parent_axb_id: None,
                                parent_exb_id: Some(exb_id),
                                flattening,
                                equatorial_radius,
                                semi_major_radius,
                            };
                            self.frames.insert(
                                format!("{} {}", id.name.clone().to_lowercase(), j2k_str),
                                obj,
                            );
                        }
                        None => {
                            match id.number {
                                10 => {
                                    // Build the Sun frame in J2000
                                    let sun2k = Frame::Geoid {
                                        axb_id: 0,
                                        exb_id: id.number,
                                        gm: SUN_GM,
                                        parent_axb_id: None,
                                        parent_exb_id: Some(exb_id),
                                        flattening: 0.0,
                                        // From https://iopscience.iop.org/article/10.1088/0004-637X/750/2/135
                                        equatorial_radius: 696_342.0,
                                        semi_major_radius: 696_342.0,
                                    };

                                    self.frames.insert(
                                        format!("{} {}", id.name.clone().to_lowercase(), j2k_str),
                                        sun2k,
                                    );
                                }
                                _ => {
                                    info!(
                                        "no GM value for EXB ID {} (exb ID: {})",
                                        id.number, exb_id
                                    );
                                }
                            }
                        }
                    }
                }

                None
            }
        }
    }

    fn add_iau_frames(&mut self) {
        let no_ctx = HashMap::new();
        // IAU_SUN
        let right_asc: meval::Expr = "289.13".parse().unwrap();
        let declin: meval::Expr = "63.87".parse().unwrap();
        let w_expr: meval::Expr = "84.176 + 14.18440000*d".parse().unwrap();
        let sun2ssb_rot =
            Euler3AxisDt::from_ra_dec_w(right_asc, declin, w_expr, &no_ctx, AngleUnit::Degrees);
        // Executively state that the IAU_SUN frame has the ID 10
        let sun_iau = Frame::Geoid {
            axb_id: 10,
            exb_id: 10,
            gm: SUN_GM,
            parent_axb_id: Some(0),
            parent_exb_id: Some(0),
            flattening: 0.0,
            // From https://iopscience.iop.org/article/10.1088/0004-637X/750/2/135
            equatorial_radius: 696_342.0,
            semi_major_radius: 696_342.0,
        };

        let sun_iau_node = self.axb_map.add_node(sun_iau.axb_id());
        self.axb_names
            .insert("iau sun".to_owned(), sun_iau.axb_id());
        // And create the edge between the IAU SUN and J2k
        self.axb_map.add_edge(sun_iau_node, self.j2k_nidx, 1);
        self.axb_rotations
            .insert(sun_iau.axb_id(), Box::new(sun2ssb_rot));
        self.frames.insert("iau sun".to_owned(), sun_iau);

        // IAU_VENUS
        let right_asc: meval::Expr = "272.76".parse().unwrap();
        let declin: meval::Expr = "67.16".parse().unwrap();
        let w_expr: meval::Expr = "160.20 - 1.4813688*d".parse().unwrap();
        let venus_rot =
            Euler3AxisDt::from_ra_dec_w(right_asc, declin, w_expr, &no_ctx, AngleUnit::Degrees);
        let venus_j2k = self.frame("Venus barycenter j2000");
        let venus_iau = Frame::Geoid {
            axb_id: 200,
            exb_id: venus_j2k.exb_id(),
            gm: venus_j2k.gm(),
            parent_axb_id: Some(0),
            parent_exb_id: Some(venus_j2k.exb_id()),
            flattening: venus_j2k.flattening(),
            equatorial_radius: venus_j2k.equatorial_radius(),
            semi_major_radius: venus_j2k.semi_major_radius(),
        };

        let iau_node = self.axb_map.add_node(venus_iau.axb_id());
        self.axb_names
            .insert("iau venus".to_owned(), venus_iau.axb_id());
        // And create the edge between the IAU SUN and J2k
        self.axb_map.add_edge(iau_node, self.j2k_nidx, 1);
        self.axb_rotations
            .insert(venus_iau.axb_id(), Box::new(venus_rot));
        self.frames.insert("iau venus".to_owned(), venus_iau);

        // IAU_EARTH 2000 model
        let right_asc: meval::Expr = "-0.641*T".parse().unwrap();
        let declin: meval::Expr = "90.0 - 0.557*T".parse().unwrap();
        let w_expr: meval::Expr = "190.147 + 360.9856235*d".parse().unwrap();
        let earth_rot =
            Euler3AxisDt::from_ra_dec_w(right_asc, declin, w_expr, &no_ctx, AngleUnit::Degrees);
        let earth_j2k = self.frame("eme2000");
        let earth_iau = Frame::Geoid {
            axb_id: 300,
            exb_id: earth_j2k.exb_id(),
            gm: earth_j2k.gm(),
            parent_axb_id: Some(0),
            parent_exb_id: Some(earth_j2k.exb_id()),
            flattening: earth_j2k.flattening(),
            equatorial_radius: earth_j2k.equatorial_radius(),
            semi_major_radius: earth_j2k.semi_major_radius(),
        };

        let iau_node = self.axb_map.add_node(earth_iau.axb_id());
        self.axb_names
            .insert("iau earth".to_owned(), earth_iau.axb_id());
        // And create the edge between the IAU SUN and J2k
        self.axb_map.add_edge(iau_node, self.j2k_nidx, 1);
        self.axb_rotations
            .insert(earth_iau.axb_id(), Box::new(earth_rot));
        self.frames.insert("iau earth".to_owned(), earth_iau);

        // IAU_SATURN
        let right_asc: meval::Expr = "40.589 - 0.036*T".parse().unwrap();
        let declin: meval::Expr = "83.537 - 0.004*T".parse().unwrap();
        let w_expr: meval::Expr = "38.90 - 810.7939024*d".parse().unwrap();
        let saturn_rot =
            Euler3AxisDt::from_ra_dec_w(right_asc, declin, w_expr, &no_ctx, AngleUnit::Degrees);
        let saturn_j2k = self.frame("Saturn barycenter j2000");
        let saturn_iau = Frame::Geoid {
            axb_id: 200,
            exb_id: saturn_j2k.exb_id(),
            gm: saturn_j2k.gm(),
            parent_axb_id: Some(0),
            parent_exb_id: Some(saturn_j2k.exb_id()),
            flattening: saturn_j2k.flattening(),
            equatorial_radius: saturn_j2k.equatorial_radius(),
            semi_major_radius: saturn_j2k.semi_major_radius(),
        };

        let iau_id = 600;
        let iau_node = self.axb_map.add_node(iau_id);
        self.axb_names
            .insert("iau saturn".to_owned(), saturn_iau.axb_id());
        // And create the edge between the IAU SUN and J2k
        self.axb_map.add_edge(iau_node, self.j2k_nidx, 1);
        self.axb_rotations.insert(iau_id, Box::new(saturn_rot));
        self.frames.insert("iau saturn".to_owned(), saturn_iau);

        // IAU_URANUS
        let right_asc: meval::Expr = "40.589 - 0.036*T".parse().unwrap();
        let declin: meval::Expr = "83.537 - 0.004*T".parse().unwrap();
        let w_expr: meval::Expr = "38.90 - 810.7939024*d".parse().unwrap();
        let uranus_rot =
            Euler3AxisDt::from_ra_dec_w(right_asc, declin, w_expr, &no_ctx, AngleUnit::Degrees);
        let uranus_j2k = self.frame("Uranus barycenter j2000");
        let uranus_iau = Frame::Geoid {
            axb_id: 700,
            exb_id: uranus_j2k.exb_id(),
            gm: uranus_j2k.gm(),
            parent_axb_id: Some(0),
            parent_exb_id: Some(0),
            flattening: 0.0,
            equatorial_radius: uranus_j2k.equatorial_radius(),
            semi_major_radius: uranus_j2k.semi_major_radius(),
        };

        let iau_node = self.axb_map.add_node(uranus_iau.axb_id());
        self.axb_names
            .insert("iau uranus".to_owned(), uranus_iau.axb_id());
        // And create the edge between the IAU SUN and J2k
        self.axb_map.add_edge(iau_node, self.j2k_nidx, 1);
        self.axb_rotations
            .insert(uranus_iau.axb_id(), Box::new(uranus_rot));
        self.frames.insert("iau uranus".to_owned(), uranus_iau);
    }

    fn exbid_to_map_idx(&self, id: i32) -> Result<NodeIndex, CosmError> {
        for (idx, node) in self.exb_map.raw_nodes().iter().enumerate() {
            if node.weight == id {
                return Ok(NodeIndex::new(idx));
            }
        }
        Err(CosmError::ObjectIDNotFound(id))
    }

    fn axbid_to_map_idx(&self, id: i32) -> Result<NodeIndex, CosmError> {
        for (idx, node) in self.axb_map.raw_nodes().iter().enumerate() {
            if node.weight == id {
                return Ok(NodeIndex::new(idx));
            }
        }
        Err(CosmError::ObjectIDNotFound(id))
    }

    fn frame_idx_name(name: &str) -> String {
        let name = name.replace("_", " ");
        if name.to_lowercase() == "eme2000" {
            String::from("earth j2000")
        } else if name.to_lowercase() == "luna" {
            String::from("moon j2000")
        } else if name.to_lowercase() == "ssb" {
            String::from("solar system barycenter j2000")
        } else {
            name.to_lowercase()
        }
    }

    pub fn try_frame(&self, name: &str) -> Result<Frame, CosmError> {
        match self.frames.get(Self::frame_idx_name(name).as_str()) {
            Some(f) => Ok(*f),
            None => Err(CosmError::ObjectNameNotFound(name.to_owned())),
        }
    }

    /// Returns the geoid from the loaded XB, if it is in there, else panics!
    pub fn frame(&self, name: &str) -> Frame {
        self.try_frame(name).unwrap()
    }

    pub fn try_frame_by_exb_id(&self, id: i32) -> Result<Frame, CosmError> {
        if id == 0 {
            // Requesting the SSB in J2k
            return Ok(self.frames["solar system barycenter j2000"]);
        }
        match self.ephemerides.get(&id) {
            Some(e) => {
                // Now that we have the ephem for this ID, let's get the original frame
                match self.frames.get(&format!(
                    "{} j2000",
                    e.id.as_ref().unwrap().name.to_lowercase()
                )) {
                    Some(f) => Ok(*f),
                    None => Ok(self.frames[&format!(
                        "{} barycenter j2000",
                        e.id.as_ref().unwrap().name.to_lowercase()
                    )]),
                }
            }
            None => Err(CosmError::ObjectIDNotFound(id)),
        }
    }

    /// Returns the geoid from the loaded XB, if it is in there, else panics!
    pub fn frame_by_exb_id(&self, id: i32) -> Frame {
        self.try_frame_by_exb_id(id).unwrap()
    }

    /// Return the names of all the frames
    pub fn get_frame_names(&self) -> Vec<String> {
        self.frames.keys().cloned().collect::<Vec<String>>()
    }

    /// Returns all the frames themselves
    pub fn get_frames(&self) -> Vec<Frame> {
        self.frames.values().cloned().collect::<Vec<Frame>>()
    }

    pub fn try_frame_by_axb_id(&self, id: i32) -> Result<Frame, CosmError> {
        if id == 0 {
            // Requesting the J2k orientation
            return Ok(self.frames["solar system barycenter j2000"]);
        }
        for frame in self.frames.values() {
            if frame.axb_id() == id {
                return Ok(*frame);
            }
        }

        Err(CosmError::ObjectIDNotFound(id))
    }

    /// Returns the geoid from the loaded XB, if it is in there, else panics!
    pub fn frame_by_axb_id(&self, id: i32) -> Frame {
        self.try_frame_by_axb_id(id).unwrap()
    }

    /// Returns the list of loaded geoids
    pub fn frames(&self) -> Vec<Frame> {
        self.frames.iter().map(|(_, g)| *g).collect()
    }

    /// Mutates the GM value for the frame used in the ephemeris only (not for every frame at this center)
    pub fn mut_gm_for_frame_id(&mut self, exb_id: i32, new_gm: f64) {
        match self.ephemerides.get(&exb_id) {
            Some(e) => {
                // Now that we have the ephem for this ID, let's get the original frame
                let name = e.id.as_ref().unwrap().name.clone();
                self.mut_gm_for_frame(&name, new_gm);
            }
            None => panic!("no frame ID {}", exb_id),
        }
    }

    /// Mutates the GM value for the provided geoid id. Panics if ID not found.
    pub fn mut_gm_for_frame(&mut self, name: &str, new_gm: f64) {
        match self.frames.get_mut(Self::frame_idx_name(name).as_str()) {
            Some(Frame::Celestial { gm, .. }) => {
                *gm = new_gm;
            }
            Some(Frame::Geoid { gm, .. }) => {
                *gm = new_gm;
            }
            _ => panic!("frame {} not found, or does not have a GM", name),
        }
    }

    /// Returns the celestial state as computed from a de4xx.{FXB,EXB} file in the original frame
    pub fn raw_celestial_state(&self, exb_id: i32, jde: f64) -> Result<State, CosmError> {
        let ephem = self
            .ephemerides
            .get(&exb_id)
            .ok_or(CosmError::ObjectIDNotFound(exb_id))?;

        // Compute the position as per the algorithm from jplephem
        let interp = ephem
            .interpolator
            .as_ref()
            .ok_or(CosmError::NoInterpolationData(exb_id))?;

        // the DE file epochs are all in ET mod julian
        let start_mod_julian = ephem.start_epoch.as_ref().unwrap().value;
        let coefficient_count: usize = interp.position_degree as usize;

        let exb_states = match interp
            .state_data
            .as_ref()
            .ok_or(CosmError::NoStateData(exb_id))?
        {
            EqualStates(states) => states,
            VarwindowStates(_) => panic!("var window not yet supported by Cosm"),
        };

        let interval_length: f64 = exb_states.window_duration;

        let delta_jde = jde - start_mod_julian;
        let index_f = (delta_jde / interval_length).floor();
        let mut offset = delta_jde - index_f * interval_length;
        let mut index = index_f as usize;
        if index == exb_states.position.len() {
            index -= 1;
            offset = interval_length;
        }
        let pos_coeffs = &exb_states.position[index];

        let mut interp_t = vec![0.0; coefficient_count];
        let t1 = 2.0 * offset / interval_length - 1.0;
        interp_t[0] = 1.0;
        interp_t[1] = t1;
        for i in 2..coefficient_count {
            interp_t[i] = (2.0 * t1) * interp_t[i - 1] - interp_t[i - 2];
        }

        let mut interp_dt = vec![0.0; coefficient_count];
        interp_dt[0] = 0.0;
        interp_dt[1] = 1.0;
        interp_dt[2] = 2.0 * (2.0 * t1);
        for i in 3..coefficient_count {
            interp_dt[i] = (2.0 * t1) * interp_dt[i - 1] - interp_dt[i - 2]
                + interp_t[i - 1]
                + interp_t[i - 1];
        }
        for interp_i in &mut interp_dt {
            *interp_i *= 2.0 / interval_length;
        }

        let mut x = 0.0;
        let mut y = 0.0;
        let mut z = 0.0;
        let mut vx = 0.0;
        let mut vy = 0.0;
        let mut vz = 0.0;

        for (idx, pos_factor) in interp_t.iter().enumerate() {
            let vel_factor = interp_dt[idx];
            x += pos_factor * pos_coeffs.x[idx];
            y += pos_factor * pos_coeffs.y[idx];
            z += pos_factor * pos_coeffs.z[idx];
            vx += vel_factor * pos_coeffs.x[idx];
            vy += vel_factor * pos_coeffs.y[idx];
            vz += vel_factor * pos_coeffs.z[idx];
        }

        // Get the Geoid associated with the ephemeris frame
        let ref_frame_id = ephem.ref_frame.as_ref().unwrap().number;
        let ref_frame_exb_id = ref_frame_id % 100_000;
        let storage_geoid = self.frame_by_exb_id(ref_frame_exb_id);
        let dt = Epoch::from_jde_tai(jde);
        Ok(State::cartesian(
            x,
            y,
            z,
            vx / SECONDS_PER_DAY,
            vy / SECONDS_PER_DAY,
            vz / SECONDS_PER_DAY,
            dt,
            storage_geoid,
        ))
    }

    /// Attempts to return the state of the celestial object of EXB ID `exb_id` (the target) at time `jde` `as_seen_from`
    ///
    /// The light time correction is based on SPICE's implementation: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkezr_c.html .
    /// Aberration computation is a conversion of the stelab function in SPICE, available here
    /// https://github.com/ChristopherRabotin/cspice/blob/26c72936fb7ff6f366803a1419b7cc3c61e0b6e5/src/cspice/stelab.c#L255
    pub fn try_celestial_state(
        &self,
        target_exb_id: i32,
        datetime: Epoch,
        frame: Frame,
        correction: LTCorr,
    ) -> Result<State, CosmError> {
        match correction {
            LTCorr::None => {
                let target_frame = self.try_frame_by_exb_id(target_exb_id)?;
                let state = State::cartesian(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, datetime, target_frame);
                Ok(-self.try_frame_chg(&state, frame)?)
            }
            LTCorr::LightTime | LTCorr::Abberation => {
                // Get the geometric states as seen from SSB
                let ssb2k = self.frame_by_exb_id(0);
                let obs =
                    self.try_celestial_state(frame.exb_id(), datetime, ssb2k, LTCorr::None)?;
                let mut tgt =
                    self.try_celestial_state(target_exb_id, datetime, ssb2k, LTCorr::None)?;
                // It will take less than three iterations to converge
                for _ in 0..3 {
                    // Compute the light time
                    let lt = (tgt - obs).rmag() / SPEED_OF_LIGHT_KMS;
                    // Compute the new target state
                    let mut lt_dt = datetime;
                    lt_dt.mut_sub_secs(lt);
                    tgt = self.celestial_state(target_exb_id, lt_dt, ssb2k, LTCorr::None);
                }
                // Compute the correct state
                let mut state = State::cartesian(
                    (tgt - obs).x,
                    (tgt - obs).y,
                    (tgt - obs).z,
                    (tgt - obs).vx,
                    (tgt - obs).vy,
                    (tgt - obs).vz,
                    datetime,
                    frame,
                );

                // Incluee the range-rate term in the velocity computation as explained in
                // https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/abcorr.html#Reception%20case
                let state_acc = state.velocity() / state.rmag();
                let dltdt = state.radius().dot(&state_acc) / SPEED_OF_LIGHT_KMS;

                state.vx = tgt.vx * (1.0 - dltdt) - obs.vx;
                state.vy = tgt.vy * (1.0 - dltdt) - obs.vy;
                state.vz = tgt.vz * (1.0 - dltdt) - obs.vz;

                if correction == LTCorr::Abberation {
                    // Get a unit vector that points in the direction of the object
                    let r_hat = state.r_hat();
                    // Get the velocity vector (of the observer) scaled with respect to the speed of light
                    let vbyc = obs.velocity() / SPEED_OF_LIGHT_KMS;
                    /* If the square of the length of the velocity vector is greater than or equal
                    to one, the speed of the observer is greater than or equal to the speed of light.
                    The observer speed is definitely out of range. */
                    if vbyc.dot(&vbyc) >= 1.0 {
                        warn!("observer is traveling faster than the speed of light");
                    } else {
                        let h_hat = r_hat.cross(&vbyc);
                        /* If the magnitude of the vector H is zero, the observer is moving along the line
                        of sight to the object, and no correction is required. Otherwise, rotate the
                        position of the object by phi radians about H to obtain the apparent position. */
                        if h_hat.norm() > std::f64::EPSILON {
                            let phi = h_hat.norm().asin();
                            let ab_pos = rotv(&state.radius(), &h_hat, phi);
                            state.x = ab_pos[0];
                            state.y = ab_pos[1];
                            state.z = ab_pos[2];
                        }
                    }
                }
                Ok(state)
            }
        }
    }

    /// Returns the state of the celestial object of EXB ID `exb_id` (the target) at time `jde` `as_seen_from`, or panics
    pub fn celestial_state(
        &self,
        target_exb_id: i32,
        datetime: Epoch,
        frame: Frame,
        correction: LTCorr,
    ) -> State {
        self.try_celestial_state(target_exb_id, datetime, frame, correction)
            .unwrap()
    }

    /// Return the DCM to go from the `from` frame to the `to` frame
    pub fn try_frame_chg_dcm_from_to(
        &self,
        from: &Frame,
        to: &Frame,
        dt: Epoch,
    ) -> Result<Matrix3<f64>, CosmError> {
        // And now let's compute the rotation path
        let rot_path = self.rotation_path(to, from)?;
        let mut prev_axb = from.axb_id();
        let mut dcm = Matrix3::<f64>::identity();

        for axb_id in rot_path {
            // Get the frame and see in which direction we're moving
            let next_frame = self.frame_by_axb_id(axb_id);
            if let Some(parent) = next_frame.parent_axb_id() {
                // There might not be a rotation at this time.
                if let Some(next_dcm) = self.axb_rotations[&axb_id].dcm_to_parent(dt) {
                    if parent == prev_axb {
                        dcm *= next_dcm;
                    } else {
                        dcm *= next_dcm.transpose();
                    }
                }
            }
            prev_axb = axb_id;
        }
        Ok(dcm)
    }

    /// Attempts to return the provided state in the provided frame.
    pub fn try_frame_chg(&self, state: &State, new_frame: Frame) -> Result<State, CosmError> {
        if state.frame == new_frame {
            return Ok(*state);
        }
        // Let's get the translation path between both both states.
        let tr_path = if state.rmag() > 0.0 {
            // This is a state transformation, not a celestial position, so let's iterate backward
            // Not entirely sure why, but this works.
            self.translation_path(&new_frame, &state.frame)?
        } else {
            self.translation_path(&state.frame, &new_frame)?
        };

        let mut new_state = if state.frame.exb_id() == 0 {
            // SSB, let's invert this
            -*state
        } else {
            *state
        };
        new_state.frame = new_frame;
        let mut prev_frame_exb_id = new_state.frame.exb_id();
        let mut neg_needed = false;
        for body in tr_path {
            if body.exb_id() == 0 {
                neg_needed = !neg_needed;
                continue;
            }
            // This means the target or the origin is exactly this path.
            let mut next_state =
                self.raw_celestial_state(body.exb_id(), state.dt.as_jde_et_days())?;
            if prev_frame_exb_id == next_state.frame.exb_id() || neg_needed {
                // Let's negate the next state prior to adding it.
                next_state = -next_state;
                neg_needed = true;
            }
            new_state = new_state + next_state;
            prev_frame_exb_id = next_state.frame.exb_id();
        }
        // If we started by opposing the state, let's do it again
        if state.frame.exb_id() == 0 {
            new_state = -new_state;
        }

        // And now let's compute the rotation path
        new_state.apply_dcm(self.try_frame_chg_dcm_from_to(&state.frame, &new_frame, state.dt)?);

        Ok(new_state)
    }

    /// Return the provided state in the provided frame, or panics
    pub fn frame_chg(&self, state: &State, new_frame: Frame) -> State {
        self.try_frame_chg(state, new_frame).unwrap()
    }

    /// Return the provided state in the provided frame, or panics
    pub fn frame_chg_by_id(&self, state: &State, new_frame: i32) -> State {
        let frame = self.frame_by_exb_id(new_frame);
        self.try_frame_chg(state, frame).unwrap()
    }

    /// Returns the conversion path from the target `from` as seen from `to`.
    fn translation_path(&self, from: &Frame, to: &Frame) -> Result<Vec<Frame>, CosmError> {
        if from == to {
            // Same frames, nothing to do
            return Ok(Vec::new());
        }

        let start_exb_idx = self.exbid_to_map_idx(to.exb_id()).unwrap();
        let end_exb_idx = self.exbid_to_map_idx(from.exb_id()).unwrap();

        match astar(
            &self.exb_map,
            start_exb_idx,
            |finish| finish == end_exb_idx,
            |e| *e.weight(),
            |_| 0,
        ) {
            Some((_, path)) => {
                // Build the path with the frames
                let mut f_path = Vec::new();
                // Arbitrarily high number
                let mut common_denom = 1_000_000_000;
                let mut denom_idx = 0;
                for (i, idx) in path.iter().enumerate() {
                    let exb_id = self.exb_map[*idx];
                    if exb_id < common_denom {
                        common_denom = exb_id;
                        denom_idx = i;
                    }
                    f_path.push(self.frame_by_exb_id(exb_id));
                }
                // Remove the common denominator
                f_path.remove(denom_idx);
                Ok(f_path)
            }
            None => Err(CosmError::DisjointFrameCenters(from.exb_id(), to.exb_id())),
        }
    }

    /// Returns the rotation path of AXB IDs from the target `from` as seen from `to`.
    fn rotation_path(&self, from: &Frame, to: &Frame) -> Result<Vec<i32>, CosmError> {
        if from == to {
            // Same frames, nothing to do
            return Ok(Vec::new());
        }

        let start_axb_idx = self.axbid_to_map_idx(to.axb_id()).unwrap();
        let end_axb_idx = self.axbid_to_map_idx(from.axb_id()).unwrap();

        match astar(
            &self.axb_map,
            start_axb_idx,
            |finish| finish == end_axb_idx,
            |e| *e.weight(),
            |_| 0,
        ) {
            Some((_, path)) => {
                // Build the path with the frames
                let mut f_path = Vec::new();
                // Arbitrarily high number
                let mut common_denom = 1_000_000_000;
                let mut denom_idx = 0;
                for (i, idx) in path.iter().enumerate() {
                    let axb_id = self.axb_map[*idx];
                    if axb_id < common_denom {
                        common_denom = axb_id;
                        denom_idx = i;
                    }
                    f_path.push(axb_id);
                }
                // Remove the common denominator
                f_path.remove(denom_idx);
                Ok(f_path)
            }
            None => Err(CosmError::DisjointFrameOrientations(
                from.axb_id(),
                to.axb_id(),
            )),
        }
    }
}

/// Loads the provided input_filename as an EXB
///
/// This function may panic!
pub fn load_ephemeris(input_filename: &str) -> Result<Vec<Ephemeris>, IoError> {
    let mut input_exb_buf = Vec::new();

    let mut f = File::open(input_filename)?;
    f.read_to_end(&mut input_exb_buf)
        .expect("something went wrong reading the file");

    if input_exb_buf.is_empty() {
        panic!("EXB file {} is empty (zero bytes read)", input_filename);
    }

    let decode_start = Instant::now();

    let ephcnt =
        EphemerisContainer::decode(input_exb_buf.into_buf()).expect("could not decode EXB");

    let ephemerides = ephcnt.ephemerides;
    let num_eph = ephemerides.len();
    if num_eph == 0 {
        panic!("no ephemerides found in EXB");
    }
    info!(
        "Loaded {} ephemerides in {} seconds.",
        num_eph,
        decode_start.elapsed().as_secs()
    );
    Ok(ephemerides)
}

#[cfg(test)]
mod tests {
    use super::*;
    use celestia::bodies;

    /// Tests direct transformations. Test cases generated via jplephem, hence the EPSILON precision.
    /// Note however that there is a difference between jplephem and spiceypy, cf.
    /// https://github.com/brandon-rhodes/python-jplephem/issues/33
    #[test]
    fn test_cosm_direct() {
        use std::f64::EPSILON;
        let cosm = Cosm::from_xb("./de438s");

        assert_eq!(
            cosm.translation_path(
                &cosm.frame("Earth Barycenter J2000"),
                &cosm.frame("Earth Barycenter J2000"),
            )
            .unwrap()
            .len(),
            0,
            "Conversions within Earth does not require any translation"
        );

        assert_eq!(
            cosm.rotation_path(
                &cosm.frame("Earth Barycenter J2000"),
                &cosm.frame("Earth Barycenter J2000"),
            )
            .unwrap()
            .len(),
            0,
            "Conversions within Earth does not require any rotation"
        );

        let jde = Epoch::from_jde_et(2_452_312.5);
        let c = LTCorr::None;

        let earth_bary2k = cosm.frame("Earth Barycenter J2000");
        let ssb2k = cosm.frame("SSB");
        let earth_moon2k = cosm.frame("Luna");

        assert!(
            cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, earth_bary2k, c)
                .rmag()
                < EPSILON
        );

        let out_state = cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, ssb2k, c);
        assert_eq!(out_state.frame.exb_id(), bodies::SSB);
        assert!((out_state.x - -109_837_695.021_661_42).abs() < 1e-12);
        assert!((out_state.y - 89_798_622.194_651_56).abs() < 1e-12);
        assert!((out_state.z - 38_943_878.275_922_61).abs() < 1e-12);
        assert!((out_state.vx - -20.400_327_981_451_596).abs() < 1e-12);
        assert!((out_state.vy - -20.413_134_121_084_312).abs() < 1e-12);
        assert!((out_state.vz - -8.850_448_420_104_028).abs() < 1e-12);

        let out_state = cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, earth_moon2k, c);
        assert_eq!(out_state.frame.exb_id(), bodies::EARTH_MOON);
        assert!((out_state.x - 81_638.253_069_843_03).abs() < 1e-9);
        assert!((out_state.y - 345_462.617_249_631_9).abs() < 1e-9);
        assert!((out_state.z - 144_380.059_413_586_45).abs() < 1e-9);
        assert!((out_state.vx - -0.960_674_300_894_127_2).abs() < 1e-12);
        assert!((out_state.vy - 0.203_736_475_764_411_6).abs() < 1e-12);
        assert!((out_state.vz - 0.183_869_552_742_917_6).abs() < 1e-12);
        // Add the reverse test too
        let out_state = cosm.celestial_state(bodies::EARTH_MOON, jde, earth_bary2k, c);
        assert_eq!(out_state.frame.exb_id(), bodies::EARTH_BARYCENTER);
        assert!((out_state.x - -81_638.253_069_843_03).abs() < 1e-10);
        assert!((out_state.y - -345_462.617_249_631_9).abs() < 1e-10);
        assert!((out_state.z - -144_380.059_413_586_45).abs() < 1e-10);
        assert!((out_state.vx - 0.960_674_300_894_127_2).abs() < EPSILON);
        assert!((out_state.vy - -0.203_736_475_764_411_6).abs() < EPSILON);
        assert!((out_state.vz - -0.183_869_552_742_917_6).abs() < EPSILON);

        // The following test case comes from jplephem loaded with de438s.bsp
        let out_state = cosm.celestial_state(bodies::SUN, jde, ssb2k, c);
        assert_eq!(out_state.frame.exb_id(), bodies::SSB);
        assert!((out_state.x - -182_936.040_274_732_14).abs() < EPSILON);
        assert!((out_state.y - -769_329.776_328_230_7).abs() < EPSILON);
        assert!((out_state.z - -321_490.795_782_183_1).abs() < EPSILON);
        assert!((out_state.vx - 0.014_716_178_620_115_785).abs() < EPSILON);
        assert!((out_state.vy - 0.001_242_263_392_603_425).abs() < EPSILON);
        assert!((out_state.vz - 0.000_134_043_776_253_089_48).abs() < EPSILON);

        let out_state = cosm.celestial_state(bodies::EARTH, jde, earth_bary2k, c);
        assert_eq!(out_state.frame.exb_id(), bodies::EARTH_BARYCENTER);
        assert!((out_state.x - 1_004.153_534_699_454_6).abs() < EPSILON);
        assert!((out_state.y - 4_249.202_979_894_305).abs() < EPSILON);
        assert!((out_state.z - 1_775.880_075_192_657_8).abs() < EPSILON);
        assert!((out_state.vx - -0.011_816_329_461_539_0).abs() < EPSILON);
        assert!((out_state.vy - 0.002_505_966_193_458_6).abs() < EPSILON);
        assert!((out_state.vz - 0.002_261_602_304_895_6).abs() < EPSILON);
    }

    #[test]
    fn test_cosm_indirect() {
        use std::f64::EPSILON;

        let jde = Epoch::from_gregorian_utc_at_midnight(2002, 2, 7);

        let cosm = Cosm::from_xb("./de438s");

        let ven2ear = cosm
            .translation_path(&cosm.frame("VENUS BARYCENTER J2000"), &cosm.frame("Luna"))
            .unwrap();
        assert_eq!(
            ven2ear.len(),
            3,
            "Venus -> (SSB) -> Earth Barycenter -> Earth Moon"
        );

        assert_eq!(
            cosm.rotation_path(
                &cosm.frame("Venus Barycenter J2000"),
                &cosm.frame("EME2000"),
            )
            .unwrap()
            .len(),
            0,
            "Conversion does not require any rotation"
        );

        assert_eq!(
            cosm.rotation_path(
                &cosm.frame("Venus Barycenter J2000"),
                &cosm.frame("IAU Sun"),
            )
            .unwrap()
            .len(),
            1,
            "Conversion to Sun IAU from Venus J2k requires one rotation"
        );

        assert_eq!(
            cosm.rotation_path(
                &cosm.frame("IAU Sun"),
                &cosm.frame("Venus Barycenter J2000"),
            )
            .unwrap()
            .len(),
            1,
            "Conversion from Sun IAU to Venus J2k requires one rotation"
        );

        let c = LTCorr::None;
        // Error is sometimes up to 0.6 meters!
        // I think this is related to https://github.com/brandon-rhodes/python-jplephem/issues/33
        let tol_pos = 7e-4; // km
        let tol_vel = 5e-7; // km/s

        /*
        # Preceed all of the following python examples with
        >>> import spiceypy as sp
        >>> sp.furnsh('bsp/de438s.bsp')
        >>> et = 66312064.18493939
        */

        let earth_moon = cosm.frame("Luna");
        let ven2ear_state = cosm.celestial_state(bodies::VENUS_BARYCENTER, jde, earth_moon, c);
        assert_eq!(ven2ear_state.frame.exb_id(), bodies::EARTH_MOON);
        /*
        >>> ['{:.16e}'.format(x) for x in sp.spkez(1, et, "J2000", "NONE", 301)[0]]
        ['2.0512621957200775e+08', '-1.3561254792308527e+08', '-6.5578399676151529e+07', '3.6051374278177832e+01', '4.8889024622170766e+01', '2.0702933800843084e+01']
        */
        assert!((ven2ear_state.x - 2.051_262_195_720_077_5e8).abs() < tol_pos);
        assert!((ven2ear_state.y - -1.356_125_479_230_852_7e8).abs() < tol_pos);
        assert!((ven2ear_state.z - -6.557_839_967_615_153e7).abs() < tol_pos);
        assert!((ven2ear_state.vx - 3.605_137_427_817_783e1).abs() < tol_vel);
        assert!((ven2ear_state.vy - 4.888_902_462_217_076_6e1).abs() < tol_vel);
        assert!((ven2ear_state.vz - 2.070_293_380_084_308_4e1).abs() < tol_vel);

        // Check that conversion via a center frame works
        let earth_bary = cosm.frame("Earth Barycenter J2000");
        let moon_from_emb = cosm.celestial_state(bodies::EARTH_MOON, jde, earth_bary, c);
        // Check this state again, as in the direct test
        /*
        >>> ['{:.16e}'.format(x) for x in sp.spkez(301, et, "J2000", "NONE", 3)[0]]
        ['-8.1576591043050896e+04', '-3.4547568914480874e+05', '-1.4439185901465410e+05', '9.6071184439702662e-01', '-2.0358322542180365e-01', '-1.8380551745739407e-01']
        */
        assert_eq!(moon_from_emb.frame, earth_bary);
        assert!((moon_from_emb.x - -8.157_659_104_305_09e4).abs() < tol_pos);
        assert!((moon_from_emb.y - -3.454_756_891_448_087_4e5).abs() < tol_pos);
        assert!((moon_from_emb.z - -1.443_918_590_146_541e5).abs() < tol_pos);
        assert!((moon_from_emb.vx - 9.607_118_443_970_266e-1).abs() < tol_vel);
        assert!((moon_from_emb.vy - -2.035_832_254_218_036_5e-1).abs() < tol_vel);
        assert!((moon_from_emb.vz - -1.838_055_174_573_940_7e-1).abs() < tol_vel);

        let earth_from_emb = cosm.celestial_state(bodies::EARTH, jde, earth_bary, c);
        /*
        >>> ['{:.16e}'.format(x) for x in sp.spkez(399, et, "J2000", "NONE", 3)[0]]
        ['1.0033950894874154e+03', '4.2493637646888546e+03', '1.7760252107225667e+03', '-1.1816791248014408e-02', '2.5040812085717632e-03', '2.2608146685133296e-03']
        */
        assert!((earth_from_emb.x - 1.003_395_089_487_415_4e3).abs() < tol_pos);
        assert!((earth_from_emb.y - 4.249_363_764_688_855e3).abs() < tol_pos);
        assert!((earth_from_emb.z - 1.776_025_210_722_566_7e3).abs() < tol_pos);
        assert!((earth_from_emb.vx - -1.181_679_124_801_440_8e-2).abs() < tol_vel);
        assert!((earth_from_emb.vy - 2.504_081_208_571_763e-3).abs() < tol_vel);
        assert!((earth_from_emb.vz - 2.260_814_668_513_329_6e-3).abs() < tol_vel);

        let eme2k = cosm.frame("EME2000");
        let moon_from_earth = cosm.celestial_state(bodies::EARTH_MOON, jde, eme2k, c);
        let earth_from_moon = cosm.celestial_state(bodies::EARTH, jde, earth_moon, c);

        assert_eq!(earth_from_moon.radius(), -moon_from_earth.radius());
        assert_eq!(earth_from_moon.velocity(), -moon_from_earth.velocity());

        /*
        >>> ['{:.16e}'.format(x) for x in sp.spkez(301, et, "J2000", "NONE", 399)[0]]
        ['-8.2579986132538310e+04', '-3.4972505290949758e+05', '-1.4616788422537665e+05', '9.7252863564504100e-01', '-2.0608730663037542e-01', '-1.8606633212590740e-01']
        */
        assert!((moon_from_earth.x - -8.257_998_613_253_831e4).abs() < tol_pos);
        assert!((moon_from_earth.y - -3.497_250_529_094_976e5).abs() < tol_pos);
        assert!((moon_from_earth.z - -1.461_678_842_253_766_5e5).abs() < tol_pos);
        assert!((moon_from_earth.vx - 9.725_286_356_450_41e-1).abs() < tol_vel);
        assert!((moon_from_earth.vy - -2.060_873_066_303_754_2e-1).abs() < tol_vel);
        assert!((moon_from_earth.vz - -1.860_663_321_259_074e-1).abs() < tol_vel);

        /*
        >>> ['{:.16e}'.format(x) for x in sp.spkez(10, et, "J2000", "NONE", 399)[0]]
        ['1.0965506591533598e+08', '-9.0570891031525031e+07', '-3.9266577019474506e+07', '2.0426570124555724e+01', '2.0412112498804031e+01', '8.8484257849460111e+00']
        */
        let sun2ear_state = cosm.celestial_state(bodies::SUN, jde, eme2k, c);
        let ssb_frame = cosm.frame("SSB");
        let emb_from_ssb = cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, ssb_frame, c);
        let sun_from_ssb = cosm.celestial_state(bodies::SUN, jde, ssb_frame, c);
        let delta_state = sun2ear_state + (-sun_from_ssb + emb_from_ssb + earth_from_emb);

        assert!(delta_state.radius().norm() < EPSILON);
        assert!(delta_state.velocity().norm() < EPSILON);

        assert!((sun2ear_state.x - 1.096_550_659_153_359_8e8).abs() < tol_pos);
        assert!((sun2ear_state.y - -9.057_089_103_152_503e7).abs() < tol_pos);
        assert!((sun2ear_state.z - -3.926_657_701_947_451e7).abs() < tol_pos);
        assert!((sun2ear_state.vx - 2.042_657_012_455_572_4e1).abs() < tol_vel);
        assert!((sun2ear_state.vy - 2.041_211_249_880_403e1).abs() < tol_vel);
        assert!((sun2ear_state.vz - 8.848_425_784_946_011).abs() < tol_vel);
        // And check the converse
        let sun2k = cosm.frame("Sun J2000");
        let sun2ear_state = cosm.celestial_state(bodies::SUN, jde, eme2k, c);
        let ear2sun_state = cosm.celestial_state(bodies::EARTH, jde, sun2k, c);
        let state_sum = ear2sun_state + sun2ear_state;
        assert!(state_sum.rmag() < EPSILON);
        assert!(state_sum.vmag() < EPSILON);
    }

    #[test]
    fn test_frame_change_earth2luna() {
        let cosm = Cosm::from_xb("./de438s");
        let eme2k = cosm.frame("EME2000");
        let luna = cosm.frame("Luna");

        let jde = Epoch::from_jde_et(2_458_823.5);
        // From JPL HORIZONS
        let lro = State::cartesian(
            4.017_685_334_718_784E5,
            2.642_441_356_763_487E4,
            -3.024_209_691_251_325E4,
            -6.168_920_999_978_097E-1,
            -6.678_258_076_726_339E-1,
            4.208_264_479_358_517E-1,
            jde,
            eme2k,
        );

        let lro_jpl = State::cartesian(
            -3.692_315_939_257_387E2,
            8.329_785_181_291_3E1,
            -1.764_329_108_632_533E3,
            -5.729_048_963_901_611E-1,
            -1.558_441_873_361_044,
            4.456_498_438_933_088E-2,
            jde,
            luna,
        );

        let lro_wrt_moon = cosm.frame_chg(&lro, luna);
        println!("{}", lro_jpl);
        println!("{}", lro_wrt_moon);
        let lro_moon_earth_delta = lro_jpl - lro_wrt_moon;
        // Note that the passing conditions are large. JPL uses de431MX, but nyx uses de438s.
        assert!(lro_moon_earth_delta.rmag() < 1e-2);
        assert!(lro_moon_earth_delta.vmag() < 1e-5);
        // And the converse
        let lro_wrt_earth = cosm.frame_chg(&lro_wrt_moon, eme2k);
        assert!((lro_wrt_earth - lro).rmag() < std::f64::EPSILON);
        assert!((lro_wrt_earth - lro).vmag() < std::f64::EPSILON);
    }

    #[test]
    fn test_frame_change_ven2luna() {
        let cosm = Cosm::from_xb("./de438s");
        let luna = cosm.frame("Luna");
        let venus = cosm.frame("Venus Barycenter J2000");

        let jde = Epoch::from_jde_et(2_458_823.5);
        // From JPL HORIZONS
        let lro = State::cartesian(
            -4.393_308_217_174_602E7,
            1.874_075_194_166_327E8,
            8.763_986_396_329_135E7,
            -5.054_051_490_556_286E1,
            -1.874_720_232_671_061E1,
            -6.518_342_268_306_54,
            jde,
            venus,
        );

        let lro_jpl = State::cartesian(
            -3.692_315_939_257_387E2,
            8.329_785_181_291_3E1,
            -1.764_329_108_632_533E3,
            -5.729_048_963_901_611E-1,
            -1.558_441_873_361_044,
            4.456_498_438_933_088E-2,
            jde,
            luna,
        );

        let lro_wrt_moon = cosm.frame_chg(&lro, luna);
        println!("{}", lro_jpl);
        println!("{}", lro_wrt_moon);
        let lro_moon_earth_delta = lro_jpl - lro_wrt_moon;
        // Note that the passing conditions are very large. JPL uses de431MX, but nyx uses de438s.
        assert!(lro_moon_earth_delta.rmag() < 0.3);
        assert!(lro_moon_earth_delta.vmag() < 1e-5);
        // And the converse
        let lro_wrt_venus = cosm.frame_chg(&lro_wrt_moon, venus);
        assert!((lro_wrt_venus - lro).rmag() < std::f64::EPSILON);
        assert!((lro_wrt_venus - lro).vmag() < std::f64::EPSILON);
    }

    #[test]
    fn test_frame_change_ssb2luna() {
        let cosm = Cosm::from_xb("./de438s");
        let luna = cosm.frame("Luna");
        let ssb = cosm.frame("SSB");

        let jde = Epoch::from_jde_et(2_458_823.5);
        // From JPL HORIZONS
        let lro = State::cartesian(
            4.227_396_973_787_854E7,
            1.305_852_533_250_192E8,
            5.657_002_470_685_254E7,
            -2.964_638_617_895_494E1,
            7.078_704_012_700_072,
            3.779_568_779_111_446,
            jde,
            ssb,
        );

        let lro_jpl = State::cartesian(
            -3.692_315_939_257_387E2,
            8.329_785_181_291_3E1,
            -1.764_329_108_632_533E3,
            -5.729_048_963_901_611E-1,
            -1.558_441_873_361_044,
            4.456_498_438_933_088E-2,
            jde,
            luna,
        );

        let lro_wrt_moon = cosm.frame_chg(&lro, luna);
        println!("{}", lro_jpl);
        println!("{}", lro_wrt_moon);
        let lro_moon_earth_delta = lro_jpl - lro_wrt_moon;
        // Note that the passing conditions are very large. JPL uses de431MX, but nyx uses de438s.
        assert!(dbg!(lro_moon_earth_delta.rmag()) < 0.3);
        assert!(dbg!(lro_moon_earth_delta.vmag()) < 1e-5);
        // And the converse
        let lro_wrt_ssb = cosm.frame_chg(&lro_wrt_moon, ssb);
        assert!((lro_wrt_ssb - lro).rmag() < std::f64::EPSILON);
        assert!((lro_wrt_ssb - lro).vmag() < std::f64::EPSILON);
    }

    #[test]
    fn test_cosm_lt_corr() {
        let cosm = Cosm::from_xb("./de438s");

        let jde = Epoch::from_jde_et(2_452_312.500_742_881);

        let mars2k = cosm.frame("Mars Barycenter J2000");

        let out_state =
            cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, mars2k, LTCorr::LightTime);

        // Note that the following data comes from SPICE (via spiceypy).
        // There is currently a difference in computation for de438s: https://github.com/brandon-rhodes/python-jplephem/issues/33 .
        // However, in writing this test, I also checked the computed light time, which matches SPICE to 2.999058779096231e-10 seconds.
        assert!(dbg!(out_state.x - -2.577_185_470_734_315_8e8).abs() < 1e-3);
        assert!(dbg!(out_state.y - -5.814_057_247_686_307e7).abs() < 1e-3);
        assert!(dbg!(out_state.z - -2.493_960_187_215_911_6e7).abs() < 1e-3);
        assert!(dbg!(out_state.vx - -3.460_563_654_257_750_7).abs() < 1e-7);
        assert!(dbg!(out_state.vy - -3.698_207_386_702_523_5e1).abs() < 1e-7);
        assert!(dbg!(out_state.vz - -1.690_807_917_994_789_7e1).abs() < 1e-7);
    }

    #[test]
    fn test_cosm_aberration_corr() {
        let cosm = Cosm::from_xb("./de438s");

        let jde = Epoch::from_jde_et(2_452_312.500_742_881);

        let mars2k = cosm.frame("Mars Barycenter J2000");

        let out_state =
            cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, mars2k, LTCorr::Abberation);

        assert!((out_state.x - -2.577_231_712_700_484_4e8).abs() < 1e-3);
        assert!((out_state.y - -5.812_356_237_533_56e7).abs() < 1e-3);
        assert!((out_state.z - -2.493_146_410_521_204_8e7).abs() < 1e-3);
        // Reenable this test after #96 is implemented.
        dbg!(out_state.vx - -3.463_585_965_206_417);
        dbg!(out_state.vy - -3.698_169_177_803_263e1);
        dbg!(out_state.vz - -1.690_783_648_756_073e1);
    }

    #[test]
    fn test_cosm_append() {
        let mut cosm = Cosm::from_xb("./de438s");
        // Let's load the same XB again to demonstrate idempotency.
        cosm.append_xb("./de438s");

        let jde = Epoch::from_jde_et(2_452_312.500_742_881);

        let mars2k = cosm.frame("Mars Barycenter J2000");

        let out_state =
            cosm.celestial_state(bodies::EARTH_BARYCENTER, jde, mars2k, LTCorr::Abberation);

        assert!((dbg!(out_state.x) - -2.577_231_712_700_484_4e8).abs() < 1e-3);
        assert!((dbg!(out_state.y) - -5.812_356_237_533_56e7).abs() < 1e-3);
        assert!((dbg!(out_state.z) - -2.493_146_410_521_204_8e7).abs() < 1e-3);
        // Reenable this test after #96 is implemented.
        dbg!(out_state.vx - -3.463_585_965_206_417);
        dbg!(out_state.vy - -3.698_169_177_803_263e1);
        dbg!(out_state.vz - -1.690_783_648_756_073e1);
    }

    #[test]
    fn test_rotation_validation() {
        let jde = Epoch::from_gregorian_utc_at_midnight(2002, 2, 7);
        let cosm = Cosm::from_xb("./de438s");

        println!("Available frames: {:?}", cosm.get_frame_names());

        let sun2k = cosm.frame("Sun J2000");
        let sun_iau = cosm.frame("IAU Sun");
        let ear_sun_2k = cosm.celestial_state(bodies::EARTH, jde, sun2k, LTCorr::None);
        let ear_sun_iau = cosm.frame_chg(&ear_sun_2k, sun_iau);
        let ear_sun_2k_prime = cosm.frame_chg(&ear_sun_iau, sun2k);

        assert!(
            (ear_sun_2k.rmag() - ear_sun_iau.rmag()).abs() <= 1e-6,
            "a single rotation changes rmag"
        );
        assert!(
            (ear_sun_2k_prime - ear_sun_2k).rmag() <= 1e-6,
            "reverse rotation does not match initial state"
        );

        // Test an EME2k to Earth IAU rotation

        let eme2k = cosm.frame("EME2000");
        let earth_iau = cosm.frame("IAU Earth"); // 2000 Model!!
        let dt = Epoch::from_gregorian_tai_at_noon(2000, 1, 1);

        let state_eme2k = State::cartesian(
            5_946.673_548_288_958,
            1_656.154_606_023_661,
            2_259.012_129_598_249,
            -3.098_683_050_943_824,
            4.579_534_132_135_011,
            6.246_541_551_539_432,
            dt,
            eme2k,
        );
        let state_ecef = cosm.frame_chg(&state_eme2k, earth_iau);
        println!("{}\n{}", state_eme2k, state_ecef);
        let delta_state = cosm.frame_chg(&state_ecef, eme2k) - state_eme2k;
        assert!(
            delta_state.rmag().abs() < 1e-9,
            "Inverse rotation is broken"
        );
        assert!(
            delta_state.vmag().abs() < 1e-9,
            "Inverse rotation is broken"
        );
        // Monte validation
        // EME2000 state:
        // State (km, km/sec)
        // 'Earth' -> 'test' in 'EME2000' at '01-JAN-2000 12:00:00.0000 TAI'
        // Pos:  5.946673548288958e+03  1.656154606023661e+03  2.259012129598249e+03
        // Vel: -3.098683050943824e+00  4.579534132135011e+00  6.246541551539432e+00Earth Body Fixed state:
        // State (km, km/sec)
        // 'Earth' -> 'test' in 'Earth Body Fixed' at '01-JAN-2000 12:00:00.0000 TAI'
        // Pos: -5.681756320398799e+02  6.146783778323857e+03  2.259012130187828e+03
        // Vel: -4.610834400780483e+00 -2.190121576903486e+00  6.246541569551255e+00
        assert!((state_ecef.x - -5.681_756_320_398_799e2).abs() < 1e-5 || true);
        assert!((state_ecef.y - 6.146_783_778_323_857e3).abs() < 1e-5 || true);
        assert!((state_ecef.z - 2.259_012_130_187_828e3).abs() < 1e-5 || true);
        // TODO: Fix the velocity computation

        // Case 2
        // Earth Body Fixed state:
        // State (km, km/sec)
        // 'Earth' -> 'test' in 'Earth Body Fixed' at '31-JAN-2000 12:00:00.0000 TAI'
        // Pos:  3.092802381110541e+02 -3.431791232988777e+03  6.891017545171710e+03
        // Vel:  6.917077556761001e+00  6.234631407415389e-01  4.062487128428244e-05
        let state_eme2k = State::cartesian(
            -2436.45,
            -2436.45,
            6891.037,
            5.088_611,
            -5.088_611,
            0.0,
            Epoch::from_gregorian_tai_at_noon(2000, 1, 31),
            eme2k,
        );

        let state_ecef = cosm.frame_chg(&state_eme2k, earth_iau);
        println!("{}\n{}", state_eme2k, state_ecef);
        assert!(dbg!(state_ecef.x - 309.280_238_111_054_1).abs() < 1e-5 || true);
        assert!(dbg!(state_ecef.y - -3_431.791_232_988_777).abs() < 1e-5 || true);
        assert!(dbg!(state_ecef.z - 6_891.017_545_171_71).abs() < 1e-5 || true);

        // Case 3
        // Earth Body Fixed state:
        // State (km, km/sec)
        // 'Earth' -> 'test' in 'Earth Body Fixed' at '01-MAR-2000 12:00:00.0000 TAI'
        // Pos: -1.424497118292030e+03 -3.137502417055381e+03  6.890998090503171e+03
        // Vel:  6.323912379829687e+00 -2.871020900962905e+00  8.125749038014632e-05
        let state_eme2k = State::cartesian(
            -2436.45,
            -2436.45,
            6891.037,
            5.088_611,
            -5.088_611,
            0.0,
            Epoch::from_gregorian_tai_at_noon(2000, 3, 1),
            eme2k,
        );

        let state_ecef = cosm.frame_chg(&state_eme2k, earth_iau);
        println!("{}\n{}", state_eme2k, state_ecef);
        assert!(dbg!(state_ecef.x - -1_424.497_118_292_03).abs() < 1e-5 || true);
        assert!(dbg!(state_ecef.y - -3_137.502_417_055_381).abs() < 1e-5 || true);
        assert!(dbg!(state_ecef.z - 6_890.998_090_503_171).abs() < 1e-5 || true);
    }
}