RealScalar

Trait RealScalar 

Source
pub trait RealScalar:
    FpScalar<RealType = Self, InnerType = Self::RawReal>
    + Sign
    + Rounding
    + Constants
    + PartialEq<f64>
    + PartialOrd
    + PartialOrd<f64>
    + Max
    + Min
    + ATan2
    + for<'a> Pow<&'a Self, Error = PowRealBaseRealExponentErrors<Self::RawReal>>
    + Clamp
    + Classify
    + ExpM1
    + Hypot
    + Ln1p
    + TotalCmp {
    type RawReal: RawRealTrait;

    // Required methods
    fn kernel_mul_add_mul_mut(
        &mut self,
        mul: &Self,
        add_mul1: &Self,
        add_mul2: &Self,
    );
    fn kernel_mul_sub_mul_mut(
        &mut self,
        mul: &Self,
        sub_mul1: &Self,
        sub_mul2: &Self,
    );
    fn try_from_f64(value: f64) -> Result<Self, ErrorsTryFromf64<Self::RawReal>>;

    // Provided methods
    fn from_f64(value: f64) -> Self { ... }
    fn truncate_to_usize(
        self,
    ) -> Result<usize, ErrorsRawRealToInteger<Self::RawReal, usize>> { ... }
}
Expand description

§Trait for scalar real numbers

RealScalar extends the fundamental FpScalar trait, providing an interface specifically for real (non-complex) floating-point numbers. It introduces operations and properties that are unique to real numbers, such as ordering, rounding, and clamping.

This trait is implemented by real scalar types within each numerical kernel, for example, f64 for the native kernel, and RealRugStrictFinite for the rug kernel (when the rug feature is enabled).

§Key Design Principles

  • Inheritance from FpScalar: As a sub-trait of FpScalar, any RealScalar type automatically gains all the capabilities of a general floating-point number, including basic arithmetic and standard mathematical functions (e.g., sin, exp, sqrt).
  • Raw Underlying Type (RawReal): This associated type specifies the most fundamental, “raw” representation of the real number, which implements the RawRealTrait. This is the type used for low-level, unchecked operations within the library’s internal implementation.
  • Reference-Based Operations: Many operations take arguments by reference (&Self) to avoid unnecessary clones of potentially expensive arbitrary-precision numbers.
  • Fallible Constructors: try_from_f64() validates inputs and ensures exact representability for arbitrary-precision types.

§Creating Validated Real Numbers

There are multiple ways to create validated real scalar instances, depending on your source data and use case:

§1. From f64 Values (Most Common)

Use try_from_f64() for fallible conversion with error handling, or from_f64() for infallible conversion that panics on invalid input:

use num_valid::{RealNative64StrictFinite, RealScalar};

// Fallible conversion (recommended for runtime values)
let x = RealNative64StrictFinite::try_from_f64(3.14)?;
assert_eq!(x.as_ref(), &3.14);

// Panicking conversion (safe for known-valid constants)
let pi = RealNative64StrictFinite::from_f64(std::f64::consts::PI);
let e = RealNative64StrictFinite::from_f64(std::f64::consts::E);

// Error handling for invalid values
let invalid = RealNative64StrictFinite::try_from_f64(f64::NAN);
assert!(invalid.is_err()); // NaN is rejected

§2. From Raw Values (Advanced)

Use try_new() when working with the raw underlying type directly:

use num_valid::RealNative64StrictFinite;
use try_create::TryNew;

// For native f64 types
let x = RealNative64StrictFinite::try_new(42.0)?;

// For arbitrary-precision types (with rug feature)
use num_valid::RealRugStrictFinite;
let high_precision = RealRugStrictFinite::<200>::try_new(
    rug::Float::with_val(200, 1.5)
)?;

§3. Using Constants

Leverage the Constants trait for mathematical constants:

use num_valid::{RealNative64StrictFinite, Constants};

let pi = RealNative64StrictFinite::pi();
let e = RealNative64StrictFinite::e();
let two = RealNative64StrictFinite::two();
let epsilon = RealNative64StrictFinite::epsilon();

§4. From Arithmetic Operations

Create values through validated arithmetic on existing validated numbers:

use num_valid::RealNative64StrictFinite;
use try_create::TryNew;

let a = RealNative64StrictFinite::try_new(2.0)?;
let b = RealNative64StrictFinite::try_new(3.0)?;

let sum = a.clone() + b.clone(); // Automatically validated
let product = &a * &b;           // Also works with references

§5. Using Zero and One Traits

For generic code, use num::Zero and num::One:

use num_valid::RealNative64StrictFinite;
use num::{Zero, One};

let zero = RealNative64StrictFinite::zero();
let one = RealNative64StrictFinite::one();
assert_eq!(*zero.as_ref(), 0.0);
assert_eq!(*one.as_ref(), 1.0);

§Choosing the Right Method

MethodUse WhenPanics?Example
from_f64()Value is guaranteed valid (constants)Yesfrom_f64(PI)
try_from_f64()Value might be invalid (user input)Notry_from_f64(x)?
try_new()Working with raw backend typesNotry_new(raw_val)?
Constants traitNeed mathematical constantsNopi(), e()
ArithmeticDeriving from other validated valuesNoa + b

§Type Safety with Validated Types

Real scalars that use validation policies implementing finite value guarantees automatically gain:

  • Full Equality (Eq): Well-defined, symmetric equality comparisons
  • Hashing (Hash): Use as keys in HashMap and HashSet
  • No Total Ordering: The library intentionally avoids Ord in favor of more efficient reference-based functions::Max/functions::Min operations

§Mathematical Operations

§Core Arithmetic

All standard arithmetic operations are available through the Arithmetic trait, supporting both value and reference semantics:

use num_valid::RealNative64StrictFinite;
use try_create::TryNew;

let a = RealNative64StrictFinite::try_new(2.0).unwrap();
let b = RealNative64StrictFinite::try_new(3.0).unwrap();

// All combinations supported: T op T, T op &T, &T op T, &T op &T
let sum1 = a.clone() + b.clone();
let sum2 = &a + &b;
let sum3 = a.clone() + &b;
let sum4 = &a + b.clone();

assert_eq!(sum1, sum2);
assert_eq!(sum2, sum3);
assert_eq!(sum3, sum4);

§Advanced Functions

In addition to the functions from FpScalar, RealScalar provides a suite of methods common in real number arithmetic. Methods prefixed with kernel_ provide direct access to underlying mathematical operations with minimal overhead:

§Constants and Utilities

use num_valid::{RealNative64StrictFinite, Constants};

let pi = RealNative64StrictFinite::pi();
let e = RealNative64StrictFinite::e();
let eps = RealNative64StrictFinite::epsilon();
let max_val = RealNative64StrictFinite::max_finite();

§Naming Convention for kernel_* Methods

Methods prefixed with kernel_ (e.g., kernel_ceil, kernel_copysign) are part of the low-level kernel interface. They typically delegate directly to the most efficient implementation for the underlying type (like f64::ceil) without adding extra validation layers. They are intended to be fast primitives upon which safer, higher-level abstractions can be built.

§Critical Trait Bounds

  • Self: FpScalar<RealType = Self>: This is the defining constraint. It ensures that the type has all basic floating-point capabilities and confirms that its associated real type is itself.
  • Self: PartialOrd + PartialOrd<f64>: These bounds are essential for comparison operations, allowing instances to be compared both with themselves and with native f64 constants.

§Backend-Specific Behavior

§Native f64 Backend

  • Direct delegation to standard library functions
  • IEEE 754 compliance
  • Maximum performance

§Arbitrary-Precision (rug) Backend

  • Configurable precision at compile-time
  • Exact arithmetic within precision limits
  • try_from_f64() validates exact representability

§Error Handling

Operations that can fail provide both panicking and non-panicking variants:

use num_valid::{RealNative64StrictFinite, functions::Sqrt};
use try_create::TryNew;

let positive = RealNative64StrictFinite::try_new(4.0).unwrap();
let negative = RealNative64StrictFinite::try_new(-4.0).unwrap();

// Panicking version (use when input validity is guaranteed)
let sqrt_pos = positive.sqrt();
assert_eq!(*sqrt_pos.as_ref(), 2.0);

// Non-panicking version (use for potentially invalid inputs)
let sqrt_neg_result = negative.try_sqrt();
assert!(sqrt_neg_result.is_err());

Required Associated Types§

Source

type RawReal: RawRealTrait

The most fundamental, “raw” representation of this real number.

This type provides the foundation for all mathematical operations and is used to parameterize error types for this scalar.

§Examples

Required Methods§

Source

fn kernel_mul_add_mul_mut( &mut self, mul: &Self, add_mul1: &Self, add_mul2: &Self, )

Multiplies two products and adds them in one fused operation, rounding to the nearest with only one rounding error. a.kernel_mul_add_mul_mut(&b, &c, &d) produces a result like &a * &b + &c * &d, but stores the result in a using its precision.

Source

fn kernel_mul_sub_mul_mut( &mut self, mul: &Self, sub_mul1: &Self, sub_mul2: &Self, )

Multiplies two products and subtracts them in one fused operation, rounding to the nearest with only one rounding error. a.kernel_mul_sub_mul_mut(&b, &c, &d) produces a result like &a * &b - &c * &d, but stores the result in a using its precision.

Source

fn try_from_f64(value: f64) -> Result<Self, ErrorsTryFromf64<Self::RawReal>>

Tries to create an instance of Self from a f64.

This conversion is fallible and validates the input value. For rug-based types, it also ensures that the f64 can be represented exactly at the target precision.

§Errors

Returns ErrorsTryFromf64 if the value is not finite or cannot be represented exactly by Self.

§Examples
use num_valid::{RealNative64StrictFinite, RealScalar};

// Valid value
let x = RealNative64StrictFinite::try_from_f64(3.14).unwrap();
assert_eq!(x.as_ref(), &3.14);

// Invalid value (NaN)
assert!(RealNative64StrictFinite::try_from_f64(f64::NAN).is_err());

Provided Methods§

Source

fn from_f64(value: f64) -> Self

Creates an instance of Self from a f64, panicking if the value is invalid.

This is a convenience method for cases where you know the value is valid (e.g., constants). For error handling without panics, use try_from_f64.

§Panics

Panics if the input value fails validation (e.g., NaN, infinity, or subnormal for strict policies).

§Examples
use num_valid::{RealNative64StrictFinite, RealScalar};

// Valid constants - cleaner syntax without unwrap()
let pi = RealNative64StrictFinite::from_f64(std::f64::consts::PI);
let e = RealNative64StrictFinite::from_f64(std::f64::consts::E);
let sqrt2 = RealNative64StrictFinite::from_f64(std::f64::consts::SQRT_2);

assert_eq!(pi.as_ref(), &std::f64::consts::PI);
use num_valid::{RealNative64StrictFinite, RealScalar};

// This will panic because NaN is invalid
let invalid = RealNative64StrictFinite::from_f64(f64::NAN);
Source

fn truncate_to_usize( self, ) -> Result<usize, ErrorsRawRealToInteger<Self::RawReal, usize>>

Safely converts the truncated value to usize.

Truncates toward zero and validates the result is a valid usize.

§Returns
  • Ok(usize): If truncated value is in 0..=usize::MAX
  • Err(_): If value is not finite or out of range
§Examples
use num_valid::{RealNative64StrictFinite, RealScalar};
use try_create::TryNew;

let x = RealNative64StrictFinite::try_new(42.9)?;
assert_eq!(x.truncate_to_usize()?, 42);

let neg = RealNative64StrictFinite::try_new(-1.0)?;
assert!(neg.truncate_to_usize().is_err());
Detailed Behavior and Edge Cases
§Truncation Rules

The fractional part is discarded, moving toward zero:

  • 3.73
  • -2.9-2
  • 0.90
§Error Conditions
§Additional Examples
use num_valid::{RealNative64StrictFinite, RealScalar, validation::ErrorsRawRealToInteger};
use try_create::TryNew;

// Zero
let zero = RealNative64StrictFinite::try_new(0.0)?;
assert_eq!(zero.truncate_to_usize()?, 0);

// Large valid values
let large = RealNative64StrictFinite::try_new(1_000_000.7)?;
assert_eq!(large.truncate_to_usize()?, 1_000_000);

// Values too large for usize
let too_large = RealNative64StrictFinite::try_new(1e20)?;
assert!(matches!(too_large.truncate_to_usize(), Err(ErrorsRawRealToInteger::OutOfRange { .. })));
§Practical Usage
use num_valid::{RealNative64StrictFinite, RealScalar};
use try_create::TryNew;

fn create_vector_with_size<T: Default + Clone>(
    size_float: RealNative64StrictFinite
) -> Result<Vec<T>, Box<dyn std::error::Error>> {
    let size = size_float.truncate_to_usize()?;
    Ok(vec![T::default(); size])
}

let size = RealNative64StrictFinite::try_new(10.7)?;
let vec: Vec<i32> = create_vector_with_size(size)?;
assert_eq!(vec.len(), 10); // Truncated from 10.7
§Comparison with Alternatives
MethodBehaviorRange CheckFractional
truncate_to_usize()Towards zeroDiscarded
as usize (raw)UndefinedUndefined
round().as usizeNearestRounded
floor().as usizeTowards -∞Discarded
ceil().as usizeTowards +∞Discarded
§Backend-Specific Notes
  • Native f64: Uses az::CheckedAs for safe conversion with overflow detection
  • Arbitrary-precision (rug): Respects current precision, may adjust for very large numbers

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl RealScalar for f64

Source§

fn kernel_mul_add_mul_mut( &mut self, mul: &Self, add_mul1: &Self, add_mul2: &Self, )

Multiplies two products and adds them in one fused operation, rounding to the nearest with only one rounding error. a.kernel_mul_add_mul_mut(&b, &c, &d) produces a result like &a * &b + &c * &d, but stores the result in a using its precision.

Source§

fn kernel_mul_sub_mul_mut( &mut self, mul: &Self, sub_mul1: &Self, sub_mul2: &Self, )

Multiplies two products and subtracts them in one fused operation, rounding to the nearest with only one rounding error. a.kernel_mul_sub_mul_mut(&b, &c, &d) produces a result like &a * &b - &c * &d, but stores the result in a using its precision.

Source§

fn try_from_f64(value: f64) -> Result<Self, ErrorsTryFromf64<f64>>

Try to build a f64 instance from a f64. The returned value is Ok if the input value is finite, otherwise the returned value is ErrorsTryFromf64.

Source§

type RawReal = f64

Implementors§