1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
//! This crate provides Nom's derive macros.
//!
//! ```rust
//! # use nom_derive::Nom;
//! # use nom::{do_parse,IResult,call};
//! # use nom::number::streaming::be_u32;
//! #
//! #[derive(Nom)]
//! # struct S(u32);
//! #
//! # fn main() {}
//! ```
//!
//! For more documentation and examples, see the [Nom derive](derive.Nom.html) documentation.

extern crate proc_macro;
extern crate proc_macro2;
extern crate syn;
#[macro_use]
extern crate quote;

use proc_macro::TokenStream;
use syn::*;
use syn::export::Span;


mod parsertree;
mod structs;
mod enums;

use structs::parse_struct;
use enums::impl_nom_enums;

/// The `Nom` derive automatically generates a `parse` function for the structure
/// using [nom] parsers. It will try to infer parsers for primitive of known
/// types, but also allows you to specify parsers using custom attributes.
///
/// [nom]: https://github.com/Geal/nom
///
/// # Deriving parsers for `Struct`
///
/// For simple structures, the parsers are automatically generated:
///
/// ```rust
/// use nom_derive::Nom;
/// use nom::{do_parse,IResult,call};
/// use nom::number::streaming::{be_u16, be_u32};
///
/// #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: u32,
///   b: u16,
///   c: u16
/// }
///
/// # fn main() {
/// let input = b"\x00\x00\x00\x01\x12\x34\x56\x78";
/// let res = S::parse(input);
/// assert_eq!(res, Ok((&input[8..],S{a:1,b:0x1234,c:0x5678})));
/// # }
/// ```
///
/// This also work for tuple structs:
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call};
/// # use nom::number::streaming::{be_u16, be_u32};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S(u32);
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[4..],S(1))));
/// # }
/// ```
///
/// By default, integers are parsed are Big Endian.
///
/// `nom-derive` is also able to derive default parsers for some usual types:
///
/// ## Option types
///
/// If a field is an `Option<T>`, the generated parser is `opt!(complete!(T::parse))`
///
/// For ex:
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,opt,complete};
/// # use nom::number::streaming::be_u32;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: Option<u32>
/// }
///
/// # fn main() {
/// let input = b"\x00\x00\x00\x01";
/// let res = S::parse(input);
/// assert_eq!(res, Ok((&input[4..],S{a:Some(1)})));
/// # }
/// ```
///
/// ## Vec types
///
/// If a field is an `Vec<T>`, the generated parser is `many0!(complete!(T::parse))`
///
/// For ex:
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,many0,complete};
/// # use nom::number::streaming::be_u16;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: Vec<u16>
/// }
///
/// # fn main() {
/// let input = b"\x00\x00\x00\x01";
/// let res = S::parse(input);
/// assert_eq!(res, Ok((&input[4..],S{a:vec![0,1]})));
/// # }
/// ```
///
/// The `Count(n)` attribute can be used to specify the number of items to parse.
///
/// Notes:
///   - the subparser is inferred as usual (item type must be `Vec< ... >`)
///   - the number of items (`n`) can be any expression, and will be cast to `usize`
///
/// For ex:
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call,count};
/// # use nom::number::streaming::be_u16;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: u16,
///   #[Count="a"]
///   b: Vec<u16>
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x01\x12\x34";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[4..],S{a:1, b:vec![0x1234]})));
/// # }
/// ```
///
/// ## Default parsing function
///
/// If a field with type `T` is not a primitive or known type, the generated parser is
/// `call!(T::parse)`.
///
/// This function can be automatically derived, or specified as a method for the struct.
/// In that case, the function must be a static method with the same API as a
/// [nom] combinator, returning the wrapped struct when parsing succeeds.
///
/// Example (using `Nom` derive):
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call};
/// # use nom::number::streaming::be_u16;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S2 {
///   c: u16
/// }
///
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: u16,
///   b: S2
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[4..],S{a:0,b:S2{c:1}})));
/// # }
/// ```
///
/// Example (defining `parse` method):
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call,map};
/// # use nom::number::streaming::{be_u16, le_u16};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// // no Nom derive
/// struct S2 {
///   c: u16
/// }
///
/// impl S2 {
///     fn parse(i:&[u8]) -> IResult<&[u8],S2> {
///         map!(
///             i,
///             call!(le_u16), // little-endian
///             |c| S2{c} // return a struct S2
///             )
///     }
/// }
///
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S {
///   a: u16,
///   b: S2
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[4..],S{a:0,b:S2{c:256}})));
/// # }
/// ```
///
/// ## Specifying parsers
///
/// Sometimes, the default parsers generated automatically are not those you
/// want.
///
/// The `Parse` custom attribute allows for specifying the parser, using code that
/// will be inserted in the `do_parse` block of the nom parser.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call};
/// # use nom::number::streaming::le_u16;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S{
///     #[Parse="le_u16"]
///     a: u16
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[2..],S{a:256})));
/// # }
/// ```
///
/// The `Parse` argument can be a complex expression:
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,call,cond};
/// # use nom::number::streaming::{be_u8, be_u16};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S{
///     pub a: u8,
///     #[Parse="cond!(a > 0,be_u16)"]
///     pub b: Option<u16>,
/// }
/// #
/// # fn main() {
/// # let input = b"\x01\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[3..],S{a:1,b:Some(1)})));
/// # }
/// ```
/// Note that you are responsible from providing correct code.
///
/// ## Adding conditions
///
/// The `Cond` custom attribute allows for specifying a condition.
/// The generated parser will use the `cond!` combinator, which calls the
/// child parser only if the condition is met.
/// The type with this attribute must be an `Option` type.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,cond,complete,call};
/// # use nom::number::streaming::{be_u8, be_u16};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S{
///     pub a: u8,
///     #[Cond="a == 1"]
///     pub b: Option<u16>,
/// }
/// #
/// # fn main() {
/// # let input = b"\x01\x00\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[3..],S{a:1,b:Some(1)})));
/// # }
/// ```
///
/// ## Adding verifications
///
/// The `Verify` custom attribute allows for specifying a verifying function.
/// The generated parser will use the `verify!` combinator, which calls the
/// child parser only if is verifies a condition (and otherwise raises an error).
///
/// The argument used in verify function is passed as a reference.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::{do_parse,IResult,verify,complete,call};
/// # use nom::number::streaming::{be_u8, be_u16};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// struct S{
///     #[Verify="*a == 1"]
///     pub a: u8,
/// }
/// #
/// # fn main() {
/// # let input = b"\x01";
/// # let res = S::parse(input);
/// # assert_eq!(res, Ok((&input[1..],S{a:1})));
/// # }
/// ```
///
/// ## Known problems
///
/// The generated parsers use the [nom] combinators directly, so they must be
/// visible in the current namespace (*i.e* imported in a `use` statement).
///
/// # Deriving parsers for `Enum`
///
/// The `Nom` attribute can also used to generate parser for `Enum` types.
/// The generated parser will used a value (called *selector*) to determine
/// which attribute variant is parsed.
/// Named and unnamed enums are supported.
///
/// In addition of `derive(Nom)`, a `Selector` attribute must be used:
///   - on the structure, to specify the type of selector to match
///   - on each variant, to specify the value associated with this variant.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::{be_u8, be_u32};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// #[Selector="u8"]
/// pub enum U1{
///     #[Selector("0")] Field1(u32),
///     #[Selector("1")] Field2(Option<u32>),
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x02";
/// # let res = U1::parse(input, 0);
/// # assert_eq!(res, Ok((&input[4..],U1::Field1(2))));
/// # }
/// ```
///
/// The generated function will look like:
///
/// <pre>
/// impl U1{
///     pub fn parse(i:&[u8), selector: u8) -> IResult<&[u8],U1> {
///         match selector {
///             ...
///         }
///     }
/// }
/// </pre>
///
/// It can be called either directly (`U1::parse(n)`) or using nom
/// (`call!(U1::parse,n)`).
///
/// The selector can be a primitive type (`u8`), or any other type implementing the `PartialEq`
/// trait.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::{be_u8, be_u32};
/// #
/// #[derive(Debug,PartialEq,Eq,Clone,Copy,Nom)]
/// pub struct MessageType(pub u8);
///
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// #[Selector="MessageType"]
/// pub enum U1{
///     #[Selector("MessageType(0)")] Field1(u32),
///     #[Selector("MessageType(1)")] Field2(Option<u32>),
/// }
///
/// // Example of call from a struct:
/// #[derive(Nom)]
/// pub struct S1{
///     pub msg_type: MessageType,
///     #[Parse="call!(U1::parse,msg_type)"]
///     pub msg_value: U1
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x02";
/// # let res = U1::parse(input, MessageType(0));
/// # assert_eq!(res, Ok((&input[4..],U1::Field1(2))));
/// # }
/// ```
///
/// ## Default case
///
/// By default, if no value of the selector matches the input value, a nom error
/// `ErrorKind::Switch` is raised. This can be changed by using `_` as selector
/// value for one the variants.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::{be_u8, be_u32};
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[derive(Nom)]
/// #[Selector="u8"]
/// pub enum U2{
///     #[Selector("0")] Field1(u32),
///     #[Selector("_")] Field2(u32),
/// }
/// #
/// # fn main() {
/// # let input = b"\x00\x00\x00\x02";
/// # let res = U2::parse(input, 123);
/// # assert_eq!(res, Ok((&input[4..],U2::Field2(2))));
/// # }
/// ```
///
/// If the `_` selector is not the last variant, the generated code will use it
/// as the last match to avoid unreachable code.
///
/// ## Special case: specifying parsers for fields
///
/// Sometimes, an unnamed field requires a custom parser. In that case, the
/// *field* (not the variant) must be annotated with attribute `Parse`.
///
/// Named fields:
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::{be_u8, be_u32};
/// #
/// # #[derive(Debug,PartialEq,Eq,Clone,Copy,Nom)]
/// # pub struct MessageType(pub u8);
/// #
/// #[derive(Nom)]
/// #[Selector="MessageType"]
/// pub enum U3<'a>{
///     #[Selector("MessageType(0)")] Field1{a:u32},
///     #[Selector("MessageType(1)")] Field2{
///         #[Parse="take!(4)"]
///         a: &'a[u8]
///     },
/// }
/// ```
///
/// Unnamed fields:
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::{be_u8, be_u32};
/// #
/// # #[derive(Debug,PartialEq,Eq,Clone,Copy,Nom)]
/// # pub struct MessageType(pub u8);
/// #
/// #[derive(Nom)]
/// #[Selector="MessageType"]
/// pub enum U3<'a>{
///     #[Selector("MessageType(0)")] Field1(u32),
///     #[Selector("MessageType(1)")] Field2(
///         #[Parse="take!(4)"] &'a[u8]
///     ),
/// }
/// ```
///
/// ## Special case: fieldless enums
///
/// If the entire enum is fieldless (a list of constant integer values), a
/// parser can be derived if
///   - the `Enum` has a `repr(ty)` attribute, with `ty` an integer type
///   - the `Enum` implements the `Eq` trait
///
/// In that case, the `Selector` attribute must *not* be specified.
///
/// ```rust
/// # use nom_derive::Nom;
/// # use nom::*;
/// # use nom::number::streaming::be_u8;
/// #
/// # #[derive(Debug,PartialEq)] // for assert_eq!
/// #[repr(u8)]
/// #[derive(Eq,Nom)]
/// pub enum U3{
///     A,
///     B = 2,
///     C
/// }
/// #
/// # fn main() {
/// # let empty : &[u8] = b"";
/// # assert_eq!(
/// #     U3::parse(b"\x00"),
/// #     Ok((empty,U3::A))
/// # );
/// # assert!(
/// #     U3::parse(b"\x01").is_err()
/// # );
/// # assert_eq!(
/// #     U3::parse(b"\x02"),
/// #     Ok((empty,U3::B))
/// # );
/// # }
/// ```
///
/// The generated parser will parse an element of type `ty` (as Big Endian), try
/// to match to enum values, and return an instance of `Enum` if it succeeds
/// (wrapped in an `IResult`).
///
/// For ex, `U3::parse(b"\x02")` will return `Ok((&b""[..],U3::B))`.
///
/// ## Limitations
///
/// Except if the entire enum is fieldless (a list of constant integer values),
/// unit fields are not supported.
#[proc_macro_derive(Nom, attributes(Parse,Verify,Cond,Count,Selector))]
pub fn nom(input: TokenStream) -> TokenStream {
    // Parse the input tokens into a syntax tree
    let ast = parse_macro_input!(input as DeriveInput);

    // Build the impl
    let gen = impl_nom(&ast, false);

    // Return the generated impl
    gen
}

fn impl_nom(ast: &syn::DeriveInput, debug:bool) -> TokenStream {
    // eprintln!("ast: {:#?}", ast);
    // test if struct has a lifetime
    let s =
        match &ast.data {
            &syn::Data::Enum(_)       => { return impl_nom_enums(ast, debug); },
            &syn::Data::Struct(ref s) => parse_struct(s),
            &syn::Data::Union(_)       => panic!("Unions not supported"),
    };
    // parse string items and prepare tokens for each field parser
    let generics = &ast.generics;
    let name = &ast.ident;
    let (idents,parser_tokens) : (Vec<_>,Vec<_>) = s.parsers.iter()
        .map(|(name,parser)| {
            let id = syn::Ident::new(name, Span::call_site());
            (id,parser)
        })
        .unzip();
    let idents2 = idents.clone();
    // Code generation
    let struct_def = match s.unnamed {
        false => quote!{ ( #name { #(#idents2),* } ) },
        true  => quote!{ ( #name ( #(#idents2),* ) ) },
    };
    let tokens = quote! {
        impl#generics #name#generics {
            pub fn parse(i: &[u8]) -> IResult<&[u8],#name> {
                do_parse!{
                    i,
                    #(#idents: #parser_tokens >>)*
                    #struct_def
                }
            }
        }
    };
    if debug {
        eprintln!("tokens:\n{}", tokens);
    }
    tokens.into()
}

/// This derive macro behaves exactly like [Nom derive](derive.Nom.html), except it
/// prints the generated parser on stderr.
/// This is helpful for debugging generated parsers.
#[proc_macro_derive(NomDeriveDebug, attributes(Parse,Verify,Cond,Count,Selector))]
pub fn nom_derive_debug(input: TokenStream) -> TokenStream {
    // Parse the input tokens into a syntax tree
    let ast = parse_macro_input!(input as DeriveInput);

    // Build the impl
    let gen = impl_nom(&ast, true);

    // Return the generated impl
    gen
}