Module nom_derive::docs::Nom[][src]

Expand description

The Nom derive automatically generates an implementation of the Parse trait for the structure using nom parsers, when possible. It will try to infer parsers for primitive of known types, but also allows you to specify parsers using custom attributes.

The code generates 3 methods:

  • parse_be: parse object as big-endian
  • parse_le: parse object as little-endian
  • parse: default function, wraps a call to parse_be

If the endianness of the struct is fixed (for ex. using the top-level BigEndian or LittleEndian attributes, or the NomBE and NomLE custom derive), then the implementation always uses this endianness, and all 3 functions are equivalent.

When there are extra args or a selector, it is not possible to generate the trait implementation (function signatures are different). In that case, an implementation block is generate with the same 3 functions.

Deriving parsers supports struct and enum types.

Many examples are provided, and more can be found in the project tests.

Table of contents

Attributes

Derived parsers can be controlled using the nom attribute, with a sub-attribute. For example, #[nom(Value)].

Note: order of attributes is important! ~[nom(Count="4", Parse="be_u16")] is not the same as #[nom(Parse="be_u16", Count="4")] (which is not valid, since end-item parsing function is given before specifying that this primitive function is applied multiple times).

Most combinators support using literal strings #[nom(Count="4")] or parenthesized values #[nom(Count(4))]

To specify multiple attributes, use a comma-separated list: #[nom(Debug, Count="4")].

The available attributes are:

AttributeSupportsDescription
AlignAfterfieldsskip bytes until aligned to a multiple of the provided value, after parsing value
AlignBeforefieldsskip bytes until aligned to a multiple of the provided value, before parsing value
BigEndianallSet the endianness to big endian
CondfieldsUsed on an Option<T> to read a value of type T only if the condition is met
CompleteallTransforms Incomplete into Error
CountfieldsSet the expected number of items to parse
DebugallPrint error message and input if parser fails (at runtime)
DebugDerivetop-levelPrint the generated code to stderr during build
DefaultfieldsDo not parse, set a field to the default value for the type
ErrorIffieldsBefore parsing, check condition is true and return an error if false.
Exacttop-levelCheck that input was entirely consumed by parser
GenericErrorstop-levelChange function signature to accept generic type parameter for error
IffieldsSimilar to Cond
IgnorefieldsAn alias for default
InputNametop-levelChange the internal name of input
IntofieldsAutomatically converts the child parser’s result to another type
LengthCountfieldsSpecify a parser to get the number of items, and parse the expected number of items
LittleEndianallSet the endianness to little endian
MapfieldsParse field, then apply a function
Movefieldsadd the specified offset to current position, before parsing
MoveAbsfieldsgo to the specified absoluted position, before parsing
ParsefieldsUse a custom parser function for reading from a file
PreExecallExecute Rust code before parsing field or struct
PostExecallExecute Rust code after parsing field or struct
SelectorallUsed to specify the value matching an enum variant
SetEndianallDynamically set the endianness
SkipAfterfieldsskip the specified number of bytes, after parsing
SkipBeforefieldsskip the specified number of bytes, before parsing
TagfieldsParse a constant pattern
TakefieldsTake n bytes of input
ValuefieldsStore result of evaluated expression in field
VerifyfieldsAfter parsing, check that condition is true and return an error if false.

See below for examples.

Deriving parsers for Struct

The Nom derive automatically generates an implementation of the Parse trait for the structure using nom parsers, when possible. It will try to infer parsers for primitive of known types, but also allows you to specify parsers using custom attributes.

The code generates 3 methods:

  • parse_be: parse object as big-endian
  • parse_le: parse object as little-endian
  • parse: default function, wraps a call to parse_be

These methods are contained in a generated implementation of the Parse trait. Note: if ExtraArgs is specified, the generated code cannot implement the Parse trait (the function signatures are different because of the extra arguments).

Import the Nom derive attribute:

use nom_derive::*;

and add it to structs or enums. The Parse trait is required for primitive types (u8, u16, …).

For simple structures, the parsers are automatically generated:

#[derive(Nom)]
struct S {
  a: u32,
  b: u16,
  c: u16
}

This also work for tuple structs:

#[derive(Nom)]
struct S(u32);

Byteorder

By default, multiple methods are generated: one for big-endian and one for little-endian.

The BigEndian or LittleEndian attributes can be applied to a struct to specify that it must always be parsed as the given endianness. In that case, the methods parse_be and parse_le will be generated as usual, but will use only the given endianness (and thus are equivalent).

#[derive(Nom)]
#[nom(LittleEndian)]
struct LittleEndianStruct {
  a: u32,
  b: u16,
  c: u16
}

let input = b"\x00\x00\x00\x01\x12\x34\x56\x78";
let res = LittleEndianStruct::parse(input);
assert_eq!(res, Ok((&input[8..],
    LittleEndianStruct{a:0x0100_0000,b:0x3412,c:0x7856}))
);

It is also equivalent (and shorter) to use the NomBE or NomLE custom derive:

#[derive(NomLE)] // all fields will be parsed as little-endian
struct LittleEndianStruct {
  a: u32,
  b: u16,
  c: u16
}

let input = b"\x00\x00\x00\x01\x12\x34\x56\x78";
let res = LittleEndianStruct::parse(input);
assert_eq!(res, Ok((&input[8..],
    LittleEndianStruct{a:0x0100_0000,b:0x3412,c:0x7856}))
);

The BigEndian and LittleEndian attributes can be specified for struct fields. The corresponding field will always be parsed using the given endianness in the generated parse_be and parse_le methods.

If both per-struct and per-field attributes are present, the more specific wins.

For example, the all fields of the following struct will be parsed as big-endian, except b:

#[derive(Nom)]
#[nom(BigEndian)]
struct MixedEndianStruct {
  a: u32,
  #[nom(LittleEndian)]
  b: u16,
  c: u16
}

The SetEndian attribute changes the endianness of all following integer parsers to the provided endianness (expected argument has type nom::number::Endianness). The expression can be any expression or function returning an endianness, and will be evaluated once at the location of the attribute.

Only the parsers after this attribute (including it) are affected: if SetEndian is applied to the third field of a struct having 4 fields, only the fields 3 and 4 will have dynamic endianness.

This allows dynamic (runtime) change of the endianness, at a small cost (a test is done before every following integer parser). However, if the argument is static or known at compilation, the compiler will remove the test during optimization.

If a BigEndian or LittleEndian is applied to a field, its definition is used prior to SetEndian.

For ex, to create a parse function having two arguments (input, and the endianness):

#[derive(Nom)]
#[nom(ExtraArgs(endian: Endianness))]
#[nom(SetEndian(endian))] // Set dynamically the endianness
struct MixedEndianStruct {
  a: u32,
  b: u16,
  #[nom(BigEndian)] // Field c will always be parsed as BigEndian
  c: u16
}

let res = MixedEndianStruct::parse(input, Endianness::Big);

Deriving and Inferring Parsers

nom-derive is also able to infer parsers for some usual types: integers, Option, Vec, etc.

If the parser cannot be inferred, a default function will be called. It is also possible to override this using the Parse attribute.

Following sections give more details.

Option types

If a field is an Option<T>, the generated parser is opt(complete(T::parse))

For ex:

#[derive(Nom)]
struct S {
  a: Option<u32>
}

let input = b"\x00\x00\x00\x01";
let res = S::parse(input);
assert_eq!(res, Ok((&input[4..],S{a:Some(1)})));

Vec types

If a field is an Vec<T>, the generated parser is many0(complete(T::parse))

For ex:

#[derive(Nom)]
struct S {
  a: Vec<u16>
}

let input = b"\x00\x00\x00\x01";
let res = S::parse(input);
assert_eq!(res, Ok((&input[4..],S{a:vec![0,1]})));

Count

The Count(n) attribute can be used to specify the number of items to parse.

Notes:

  • the subparser is inferred as usual (item type must be Vec< ... >)
  • the number of items (n) can be any expression, and will be cast to usize

For ex:

#[derive(Nom)]
struct S {
  a: u16,
  #[nom(Count="a")]
  b: Vec<u16>
}

LengthCount

The LengthCount="parser" attribute can be used to specify a parser to get a number, and use this number to parse an expected number of items.

Notes:

  • the subparser is inferred as usual (item type must be Vec< ... >)
  • the length parser must return a number

For ex:

#[derive(Nom)]
struct S {
  #[nom(LengthCount="be_u16")]
  b: Vec<u16>
}

Tag

The Tag(value) attribute is used to parse a constant value (or “magic”).

For ex:

#[derive(Nom)]
struct S<'a> {
  #[nom(Tag(b"TAG"))]
  tag: &'a[u8],
  a: u16,
  b: u16,
}

Take

The Take="n" attribute can be used to take n bytes of input.

Notes:

  • the number of items (n) can be any expression, and will be cast to usize

For ex:

#[derive(Nom)]
struct S<'a> {
  a: u16,
  #[nom(Take="1")]
  b: &'a [u8],
}

Default parsing function

If a field with type T is not a primitive or known type, the generated parser is T::parse(input).

This function can be automatically derived, or specified as a method for the struct. In that case, the function must be a static method with the same API as a nom combinator, returning the wrapped struct when parsing succeeds.

For example (using Nom derive):

#[derive(Nom)]
struct S2 {
  c: u16
}

#[derive(Nom)]
struct S {
  a: u16,
  b: S2
}

Example (implementing the Parse trait manually):

// no Nom derive
struct S2 {
  c: u16
}

impl<'a> Parse<&'a[u8]> for S2 {
    fn parse(i:&'a [u8]) -> IResult<&'a [u8],S2> {
        map(
            le_u16, // little-endian
            |c| S2{c} // return a struct S2
        )(i)
    }
}

#[derive(Nom)]
struct S {
  a: u16,
  b: S2
}

Custom parsers

Sometimes, the default parsers generated automatically are not those you want.

The Parse custom attribute allows for specifying the parser that will be inserted in the nom parser.

The parser is called with input as argument, so the signature of the parser must be equivalent to:

fn parser(i: &[u8]) -> IResult<&[u8], T> {
// ...
}

For example, to specify the parser of a field:

#[derive(Nom)]
struct S{
    #[nom(Parse="le_u16")]
    a: u16
}

The Parse argument can be a complex expression:

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Parse="cond(a > 0,be_u16)")]
    pub b: Option<u16>,
}

Note that you are responsible from providing correct code.

Default

If a field is marked as Ignore (or Default), it will not be parsed. Its value will be the default value for the field type.

This is convenient if the structured has more fields than the serialized value.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Ignore)]
    pub b: Option<u16>,
}

Complete

The Complete attribute transforms Incomplete into Error.

Default is to use streaming parsers. If there are not enough bytes, error will look like Err(Error::Incomplete(Needed(5))). A streaming parser can use this to determine if data is missing, wait for more data, then call again the parse function.

When the parser has the entire data, it is more useful to transform this into an error to stop parsing, using the Complete attribute.

This attribute can be used on a specific field:

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Complete)]
    pub b: u64,
}

This attribute can be also used on the entire object, applying to every fields:

#[derive(Nom)]
#[nom(Complete)]
struct S{
    pub a: u8,
    pub b: u64,
}

Into

The Into attribute automatically converts the child parser’s output and error types to other types.

It requires the output and error type to implement the Into trait.

This attribute can be used on a specific field:

fn parser1(i: &[u8]) -> IResult<&[u8], &[u8]> {
    alpha1(i)
}
#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Into, Parse = "parser1")]
    pub b: Vec<u8>,
}

Map

The Map attribute can be used to apply a function to the result of the parser. It is often used combined with the Parse attribute.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Map = "|x: u8| x.to_string()", Parse="be_u8")]
    pub b: String,
}

Conditional Values

The Cond custom attribute allows for specifying a condition. The generated parser will use the cond! combinator, which calls the child parser only if the condition is met. The type with this attribute must be an Option type.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Cond="a == 1")]
    pub b: Option<u16>,
}

Value

The Value attribute does not parse data. It is used to store the result of the evaluated expression in the variable.

Previous fields can be used in the expression.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Value = "a.to_string()")]
    pub b: String,
}

Verifications

The Verify custom attribute allows for specifying a verifying function. The generated parser will use the verify combinator, which calls the child parser only if is verifies a condition (and otherwise raises an error).

The argument used in verify function is passed as a reference.

#[derive(Nom)]
struct S{
    #[nom(Verify="*a == 1")]
    pub a: u8,
}

The ErrorIf checks the provided condition, and return an error if the test returns false. The condition is tested before any parsing occurs for this field, and does not change the input pointer.

Error has type ErrorKind::Verify (nom).

The argument used in verify function is passed as a reference.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(ErrorIf(a != 1))]
    pub b: u8,
}

Exact

The Exact custom attribute adds a verification after parsing the entire element. It succeeds if the input has been entirely consumed by the parser.

#[derive(Nom)]
#[nom(Exact)]
struct S{
    pub a: u8,
}

PreExec

The PreExec custom attribute executes the provided code before parsing the field or structure.

This attribute can be specified multiple times. Statements will be executed in order.

Note that the current input can be accessed, as a regular variable (see InputName). If you create a new variable with the same name, it will be used as input (resulting in side-effects).

Expected value: a valid Rust statement

#[derive(Nom)]
struct S{
    #[nom(PreExec="let sz = i.len();")]
    pub a: u8,
    #[nom(Value(sz))]
    pub sz: usize,
}

PostExec

The PostExec custom attribute executes the provided code after parsing the field or structure.

This attribute can be specified multiple times. Statements will be executed in order.

Note that the current input can be accessed, as a regular variable (see InputName). If you create a new variable with the same name, it will be used as input (resulting in side-effects).

Expected value: a valid Rust statement

#[derive(Nom)]
struct S{
    #[nom(PostExec="let b = a + 1;")]
    pub a: u8,
    #[nom(Value(b))]
    pub b: u8,
}

If applied to the top-level element, the statement is executing after the entire element is parsed.

If parsing a structure, the built structure is available in the struct_def variable.

If parsing an enum, the built structure is available in the enum_def variable.

#[derive(Debug)]
#[derive(Nom)]
#[nom(PostExec(println!("parsing done: {:?}", struct_def);))]
struct S{
    pub a: u8,
    pub b: u8,
}

Alignment and Padding

  • AlignAfter/AlignBefore: skip bytes until aligned to a multiple of the provided value Alignment is calculated to the start of the original parser input
  • SkipAfter/SkipBefore: skip the specified number of bytes
  • Move: add the speficied offset to current position, before parsing. Offset can be negative.
  • MoveAbs: go to specified absolute position (relative to the start of original parser input), before parsing

If multiple directives are provided, they are applied in order of appearance of the attribute.

If the new position would be before the start of the slice or beyond its end, an error is raised (TooLarge or Incomplete, depending on the case).

Expected value: a valid Rust value (immediate value, or expression)

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(AlignBefore(4))]
    pub b: u8,
}

Deriving parsers for Enum

The Nom attribute can also used to generate parser for Enum types. The generated parser will used a value (called selector) to determine which attribute variant is parsed. Named and unnamed enums are supported.

In addition of derive(Nom), a Selector attribute must be used:

  • on the structure, to specify the type of selector to match
  • on each variant, to specify the value associated with this variant.

Expected values:

  • top-level: a valid Rust type
  • fields: a valid Rust match arm expression (for ex: 0). Note: this expression can contain a pattern guard (for ex: x if x > 2)
#[derive(Nom)]
#[nom(Selector="u8")]
pub enum U1{
    #[nom(Selector="0")] Field1(u32),
    #[nom(Selector="1")] Field2(Option<u32>),
}

The generated function will look like:

impl U1{
    pub fn parse_be(i:&[u8], selector: u8) -> IResult<&[u8],U1> {
        match selector {
            ...
        }
    }
    pub fn parse_le(i:&[u8], selector: u8) -> IResult<&[u8],U1> {
        match selector {
            ...
        }
    }
    pub fn parse(i:&[u8], selector: u8) -> IResult<&[u8],U1> {
        U1::parse_be(i, selector)
    }
}

Note that it is not possible to generate an implementation of the Parse trait, since the function signature has an extra argument (the selector). Except this extra argument, the generated implementation behaves the same as the trait.

It can be called either directly (U1::parse(n)) or using nom (call!(U1::parse,n)).

The selector can be a primitive type (u8), or any other type implementing the PartialEq trait.

#[derive(Debug,PartialEq,Eq,Clone,Copy,Nom)]
pub struct MessageType(pub u8);

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U1{
    #[nom(Selector="MessageType(0)")] Field1(u32),
    #[nom(Selector="MessageType(1)")] Field2(Option<u32>),
}

// Example of call from a struct:
#[derive(Nom)]
pub struct S1{
    pub msg_type: MessageType,
    #[nom(Parse="{ |i| U1::parse(i, msg_type) }")]
    pub msg_value: U1
}

Default case

By default, if no value of the selector matches the input value, a nom error ErrorKind::Switch is raised. This can be changed by using _ as selector value for one the variants.

#[derive(Nom)]
#[nom(Selector="u8")]
pub enum U2{
    #[nom(Selector="0")] Field1(u32),
    #[nom(Selector="_")] Field2(u32),
}

If the _ selector is not the last variant, the generated code will use it as the last match to avoid unreachable code.

Special case: specifying parsers for fields

Sometimes, an unnamed field requires a custom parser. In that case, the field (not the variant) must be annotated with attribute Parse.

Named fields:

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U3<'a>{
    #[nom(Selector="MessageType(0)")] Field1{a:u32},
    #[nom(Selector="MessageType(1)")] Field2{
        #[nom(Parse="take(4 as usize)")]
        a: &'a[u8]
    },
}

Unnamed fields:

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U3<'a>{
    #[nom(Selector="MessageType(0)")] Field1(u32),
    #[nom(Selector="MessageType(1)")] Field2(
        #[nom(Parse="take(4 as usize)")] &'a[u8]
    ),
}

Special case: fieldless enums

If the entire enum is fieldless (a list of constant integer values), a parser can be derived if

  • the Enum has a repr(ty) attribute, with ty an integer type
  • the Enum implements the Eq trait

In that case, the Selector attribute must not be specified.

Note: if ExtraArgs is not specified, the generated code is an implementation of the Parse trait.

#[repr(u8)]
#[derive(Eq,Nom)]
pub enum U3{
    A,
    B = 2,
    C
}

The generated parser will parse an element of type ty (as Big Endian), try to match to enum values, and return an instance of Enum if it succeeds (wrapped in an IResult).

For ex, U3::parse(b"\x02") will return Ok((&b""[..],U3::B)).

Input Name

Internally, the parser will use a variable to follow the input. By default, this variable is named i.

This can cause problems, for example, if one field of the structure has the same name

The internal variable name can be renamed using the InputName top-level attribute.

#[derive(Nom)]
#[nom(InputName(aaa))]
pub struct S {
    pub i: u8,
}

Note that this variable can be used as usual, for ex. to peek data without advancing in the current stream, determining the length of remaining bytes, etc.

#[derive(Nom)]
#[nom(InputName(i))]
pub struct S {
    pub a: u8,
    #[nom(Value(i.len()))]
    pub remaining_len: usize,
}

This can create side-effects: if you create a variable with the same name as the input, it will shadow it. While this will is generally an error, it can sometimes be useful.

For example, to skip 2 bytes of input:

#[derive(Nom)]
#[nom(InputName(i))]
pub struct S {
    pub a: u8,
    // skip 2 bytes
    // XXX this will panic if input is smaller than 2 bytes at this points
    #[nom(PreExec(let i = &i[2..];))]
    pub b: u8,
}

Debug

Errors in generated parsers may be hard to understand and debug.

The Debug attribute insert calls to nom’s dbg_dmp function, which will print an error message and the input if the parser fails. This attribute can be applied to either fields, or at top-level (all sub-parsers will be wrapped).

This helps resolving parse errors (at runtime).

#[derive(Nom)]
pub struct S {
    pub a: u32,
    #[nom(Debug)]
    pub b: u64,
}

DebugDerive

The DebugDerive attribute, if applied to top-level, makes the generator print the generated code to stderr.

This helps resolving compiler errors.

#[derive(Nom)]
#[nom(DebugDerive)]
pub struct S {
    pub a: u32,
}

Generic Errors

By default, nom-derive will use nom’s default error type ((&[u8], ErrorKind)). In most cases, this will be enough for a simple parser. However, there are some cases like debugging a runtime error, or using custom error types, where this error type is not easy to use.

The GenericErrors attribute changes the generated function signature to have a generic type parameter for the error type:

#[derive(Nom)]
#[nom(GenericErrors)]
pub struct S {
    pub a: u32,
}

will generate the following code signature (simplified):

impl <'nom, E> Parse <&'nom [u8], E> for S
where
    E : nom::error::ParseError <&'nom [u8]>
{
    fn parse_be(orig_i : &'nom [u8]) -> IResult <&'nom [u8], Self, E>
    {
        ...
    }
}

The parse method requires to give a concrete type for the error type when called:

let res: IResult<_, _, VerboseError<_>> = S::parse_be(input);
let (rem, res) = res.unwrap();

This attribute has the following requirements:

  • The error type must implement nom::error::ParseError<&[u8]>
  • All subparsers must return compatible error types

Generic Type Parameters

nom-derive supports generic type parameters in the struct or enum definition.

Requirements:

  • Every generic type parameter must implement the Parse trait from this crate
  • Note: it the generic type is not boxed, this often require the type to be Sized

Example:

#[derive(Nom)]
pub struct S<T> where T: Sized {
    pub a: u32,
    pub t: T,
}

Generic type parameters can also be used with generic errors.