1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2016 Matthew D. Michelotti
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This crate contains floating point types that panic if they are set
//! to an illegal value, such as NaN.
//!
//! The name "Noisy Float" comes from
//! the terms "quiet NaN" and "signaling NaN"; "signaling" was too long
//! to put in a struct/crate name, so "noisy" is used instead, being the opposite
//! of "quiet."
//!
//! The standard types defined in `noisy_float::types` follow the principle
//! demonstrated by Rust's handling of integer overflow:
//! a bad arithmetic operation is considered an error,
//! but it is too costly to check everywhere in optimized builds.
//! For each floating point number that is created, a `debug_assert!` invocation is used
//! to check if it is valid or not.
//! This way, there are guarantees when developing code that floating point
//! numbers have valid values,
//! but during a release run there is *no overhead* for using these floating
//! point types compared to using `f32` or `f64` directly.
//!
//! This crate makes use of the floating point and number traits in the
//! popular `num_traits` crate.
//!
//! #Examples
//! An example using the `R64` type, which corresponds to *finite* `f64` values.
//!
//! ```
//! use noisy_float::prelude::*;
//!
//! fn geometric_mean(a: R64, b: R64) -> R64 {
//!     (a * b).sqrt() //used just like regular floating point numbers
//! }
//!
//! fn mean(a: R64, b: R64) -> R64 {
//!     (a + b) * 0.5 //the RHS of ops can be the underlying float type
//! }
//! 
//! println!("geometric_mean(10.0, 20.0) = {}", geometric_mean(r64(10.0), r64(20.0)));
//! //prints 14.142...
//! assert!(mean(r64(10.0), r64(20.0)) == 15.0);
//! ```
//!
//! An example using the `N32` type, which corresponds to *non-NaN* `f32` values.
//! The float types in this crate are able to implement `Eq` and `Ord` properly,
//! since NaN is not allowed.
//!
//! ```
//! use noisy_float::prelude::*;
//!
//! let values = vec![n32(3.0), n32(-1.5), n32(71.3), N32::infinity()];
//! assert!(values.iter().cloned().min() == Some(n32(-1.5)));
//! assert!(values.iter().cloned().max() == Some(N32::infinity()));
//! ```

extern crate num_traits;

pub mod checkers;
pub mod types;
mod float_impl;

/// Prelude for the `noisy_float` crate.
///
/// This includes all of the types defined in the `noisy_float::types` module,
/// as well as a re-export of the `Float` trait from the `num_traits` crate.
/// It is important to have this re-export here, because it allows the user
/// to access common floating point methods like `abs()`, `sqrt()`, etc.
pub mod prelude {
    pub use types::*;
    
    pub use num_traits::Float;
}

use std::marker::PhantomData;
use std::fmt;
use num_traits::Float;

/// Trait for checking whether a floating point number is *valid*.
///
/// The implementation defines its own criteria for what constitutes a *valid* value.
pub trait FloatChecker<F> {
    /// Returns `true` if (and only if) the given floating point number is *valid*
    /// according to this checker's criteria.
    ///
    /// The only hard requirement is that NaN *must* be considered *invalid*
    /// for all implementations of `FloatChecker`.
    fn check(value: F) -> bool;
    
    /// A function that may panic if the floating point number is *invalid*.
    ///
    /// Should either call `assert!(check(value), ...)` or `debug_assert!(check(value), ...)`.
    fn assert(value: F);
}

/// A floating point number with a restricted set of legal values.
///
/// Typical users will not need to access this struct directly, but
/// can instead use the type aliases found in the module `noisy_float::types`.
/// However, this struct together with a `FloatChecker` implementation can be used
/// to define custom behavior.
///
/// The underlying float type is `F`, usually `f32` or `f64`.
/// Valid values for the float are determined by the float checker `C`.
/// If an invalid value would ever be returned from a method on this type,
/// the method will panic instead, using either `assert!` or `debug_assert!`
/// as defined by the float checker.
/// The exception to this rule is for methods that return an `Option` containing
/// a `NoisyFloat`, in which case the result would be `None` if the value is invalid.
pub struct NoisyFloat<F: Float, C: FloatChecker<F>> {
    value: F,
    checker: PhantomData<C>
}

impl<F: Float, C: FloatChecker<F>> NoisyFloat<F, C> {
    /// Constructs a `NoisyFloat` with the given value.
    ///
    /// Uses the `FloatChecker` to assert that the value is valid.
    #[inline]
    pub fn new(value: F) -> Self {
        C::assert(value);
        Self::unchecked_new(value)
    }
    
    #[inline]
    fn unchecked_new(value: F) -> Self {
        NoisyFloat {
            value: value,
            checker: PhantomData
        }
    }
    
    /// Tries to construct a `NoisyFloat` with the given value.
    ///
    /// Returns `None` if the value is invalid.
    #[inline]
    pub fn try_new(value: F) -> Option<Self> {
        if C::check(value) {
            Some(NoisyFloat {
                value: value,
                checker: PhantomData
            })
        } else {
            None
        }
    }
    
    /// Constructs a `NoisyFloat` with the given `f32` value.
    ///
    /// May panic not only by the `FloatChecker` but also
    /// by unwrapping the result of a `NumCast` invocation for type `F`,
    /// although the later should not occur in normal situations.
    #[inline]
    pub fn from_f32(value: f32) -> Self {
        Self::new(F::from(value).unwrap())
    }
    
    /// Constructs a `NoisyFloat` with the given `f64` value.
    ///
    /// May panic not only by the `FloatChecker` but also
    /// by unwrapping the result of a `NumCast` invocation for type `F`,
    /// although the later should not occur in normal situations.
    #[inline]
    pub fn from_f64(value: f64) -> Self {
        Self::new(F::from(value).unwrap())
    }

    /// Returns the underlying float value.
    #[inline]
    pub fn raw(self) -> F {
        self.value
    }
}

impl<F: Float + Default, C: FloatChecker<F>> Default for NoisyFloat<F, C> {
    #[inline]
    fn default() -> Self {
        Self::new(F::default())
    }
}

impl<F: Float + fmt::Debug, C: FloatChecker<F>> fmt::Debug for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Debug::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::Display, C: FloatChecker<F>> fmt::Display for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Display::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::LowerExp, C: FloatChecker<F>> fmt::LowerExp for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::LowerExp::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::UpperExp, C: FloatChecker<F>> fmt::UpperExp for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::UpperExp::fmt(&self.value, f)
    }
}


#[cfg(test)]
mod tests {
    use prelude::*;
    use std::f32;
    use std::f64::{self, consts};

    #[test]
    fn smoke_test() {
        assert!(n64(1.0) + 2.0 == 3.0);
        assert!(n64(3.0) != n64(2.9));
        assert!(r64(1.0) < 2.0);
        let mut value = n64(18.0);
        value %= n64(5.0);
        assert!(-value == n64(-3.0));
        assert!(r64(1.0).exp() == consts::E);
        assert!((N64::try_new(1.0).unwrap() / N64::infinity()) == 0.0);
        assert!(N64::from_f32(f32::INFINITY) == N64::from_f64(f64::INFINITY));
        assert!(R64::try_new(f64::NEG_INFINITY) == None);
        assert!(N64::try_new(f64::NAN) == None);
        assert!(R64::try_new(f64::NAN) == None);
    }
    
    #[test]
    #[should_panic]
    fn n64_nan() {
        n64(0.0) / n64(0.0);
    }
    
    #[test]
    #[should_panic]
    fn r64_nan() {
        r64(0.0) / r64(0.0);
    }
    
    #[test]
    #[should_panic]
    fn r64_infinity() {
        r64(1.0) / r64(0.0);
    }
}