1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use cipherstate::CipherState;
use error::NoiseError;
use handshakepattern::{Token, HandshakePattern};
use symmetricstate::SymmetricState;
use traits::{DH, Cipher, Hash, U8Array};

/// Noise handshake state.
///
/// # Notes
///
/// `HandshakeState` does not generate new ephemeral keys when seeing
/// a `E` token. Users of `HandshakeState` are responsible for
/// generating fresh ephemeral keys.
///
/// # Panics
///
/// `HandshakeState` must be used correctly, or its methods will likely panic:
///
/// Keys required by the handshake pattern must be set;
///
/// `write_message` and `read_message` must be called in right turns;
///
/// `write_message` and `read_message` must not be called after `completed`.
pub struct HandshakeState<D: DH, C: Cipher, H: Hash> {
    symmetric: SymmetricState<C, H>,
    s: Option<D::Key>,
    e: Option<D::Key>,
    rs: Option<D::Pubkey>,
    re: Option<D::Pubkey>,
    is_initiator: bool,
    pattern: HandshakePattern,
    message_index: usize,
}

impl<D, C, H> HandshakeState<D, C, H>
    where D: DH,
          C: Cipher,
          H: Hash
{
    /// Get protocol name, e.g. Noise_IK_25519_ChaChaPoly_BLAKE2s.
    pub fn get_name(has_psk: bool, pattern_name: &str) -> String {
        format!("Noise{}_{}_{}_{}_{}",
                if has_psk { "PSK" } else { "" },
                pattern_name,
                D::name(),
                C::name(),
                H::name())
    }

    /// Initialize a handshake state.
    pub fn new(pattern: HandshakePattern,
               is_initiator: bool,
               prologue: &[u8],
               psk: Option<&[u8]>,
               s: Option<D::Key>,
               e: Option<D::Key>,
               rs: Option<D::Pubkey>,
               re: Option<D::Pubkey>)
               -> Self {
        let mut symmetric = SymmetricState::new(Self::get_name(psk.is_some(), pattern.get_name())
            .as_bytes());

        // Mix in prologue.
        symmetric.mix_hash(prologue);

        // Mix in pre-shared key.
        if let Some(psk) = psk {
            assert_eq!(psk.len(), 32);
            symmetric.mix_preshared_key(psk);
        }

        // Mix in static keys known ahead of time.
        for t in pattern.get_pre_i() {
            match *t {
                Token::S => {
                    if is_initiator {
                        symmetric.mix_hash(D::pubkey(s.as_ref().unwrap()).as_slice());
                    } else {
                        symmetric.mix_hash(rs.as_ref().unwrap().as_slice());
                    }
                }
                Token::E => {
                    if is_initiator {
                        let e = D::pubkey(e.as_ref().unwrap());
                        symmetric.mix_hash(e.as_slice());
                        if symmetric.has_preshared_key() {
                            symmetric.mix_key(e.as_slice());
                        }
                    } else {
                        let re = re.as_ref().unwrap().as_slice();
                        symmetric.mix_hash(re);
                        if symmetric.has_preshared_key() {
                            symmetric.mix_key(re);
                        }
                    }
                }
                _ => panic!("Unexpected token in pre message"),
            }
        }
        for t in pattern.get_pre_r() {
            match *t {
                Token::S => {
                    if is_initiator {
                        symmetric.mix_hash(rs.as_ref().unwrap().as_slice());
                    } else {
                        symmetric.mix_hash(D::pubkey(s.as_ref().unwrap()).as_slice());
                    }
                }
                Token::E => {
                    if is_initiator {
                        let re = re.as_ref().unwrap().as_slice();
                        symmetric.mix_hash(re);
                        if symmetric.has_preshared_key() {
                            symmetric.mix_key(re);
                        }
                    } else {
                        let e = D::pubkey(e.as_ref().unwrap());
                        symmetric.mix_hash(e.as_slice());
                        if symmetric.has_preshared_key() {
                            symmetric.mix_key(e.as_slice());
                        }
                    }
                }
                _ => panic!("Unexpected token in pre message"),
            }
        }

        HandshakeState {
            symmetric: symmetric,
            s: s,
            e: e,
            rs: rs,
            re: re,
            is_initiator: is_initiator,
            pattern: pattern,
            message_index: 0,
        }
    }

    /// Takes a payload and return a packet that you should send to the peer.
    pub fn write_message(&mut self, payload: &[u8]) -> Vec<u8> {
        // Check that it is our turn to send.
        assert!(self.message_index % 2 == if self.is_initiator { 0 } else { 1 });

        // Get the message pattern.
        // Clone to make the borrow check happy.
        let m = self.pattern.get_message_patterns()[self.message_index].clone();
        self.message_index += 1;

        let mut out = Vec::new();

        // Process tokens.
        for t in m {
            match t {
                Token::E => {
                    // Spec says that we should generate new ephemeral key, but that would make
                    // testing very difficult.
                    let e_pk = D::pubkey(self.e.as_ref().unwrap());
                    self.symmetric.mix_hash(e_pk.as_slice());
                    if self.symmetric.has_preshared_key() {
                        self.symmetric.mix_key(e_pk.as_slice());
                    }
                    out.extend_from_slice(e_pk.as_slice());
                }
                Token::S => {
                    let encrypted_s = self.symmetric
                        .encrypt_and_hash_vec(D::pubkey(self.s.as_ref().unwrap()).as_slice());
                    out.extend_from_slice(&encrypted_s);
                }
                t => self.perform_dh(t),
            }
        }

        let encrypted_payload = self.symmetric.encrypt_and_hash_vec(payload);
        out.extend_from_slice(&encrypted_payload);

        out
    }

    /// Update handshake state and get payload, given a packet.
    ///
    /// If the packet fails to decrypt, the whole HandshakeState may be in invalid state, and
    /// should not be used any more. Expect to `get_re` before falling back to `XXfallback`.
    pub fn read_message(&mut self, data: &[u8]) -> Result<Vec<u8>, NoiseError> {
        // Check that it is our turn to recv.
        assert!(self.message_index % 2 == if self.is_initiator { 1 } else { 0 });

        // Get the message pattern.
        let m = self.pattern.get_message_patterns()[self.message_index].clone();
        self.message_index += 1;

        let mut data = data;
        // Consume the next `n` bytes of data.
        let mut get = |n| if data.len() >= n {
            let ret = &data[..n];
            data = &data[n..];
            Ok(ret)
        } else {
            Err(NoiseError::TooShort)
        };

        // Process tokens.
        for t in m {
            match t {
                Token::E => {
                    let mut re = D::Pubkey::new();
                    re.as_mut().copy_from_slice(get(D::Pubkey::len())?);
                    self.symmetric.mix_hash(re.as_slice());
                    if self.symmetric.has_preshared_key() {
                        self.symmetric.mix_key(re.as_slice());
                    }
                    self.re = Some(re);
                }
                Token::S => {
                    let temp = get(if self.symmetric.has_key() {
                        D::Pubkey::len() + 16
                    } else {
                        D::Pubkey::len()
                    })?;
                    let mut rs = D::Pubkey::new();
                    self.symmetric.decrypt_and_hash(temp, rs.as_mut())?;
                    self.rs = Some(rs);
                }
                t => self.perform_dh(t),
            }
        }

        Ok(self.symmetric.decrypt_and_hash_vec(data)?)
    }

    /// Whether handshake has completed.
    pub fn completed(&self) -> bool {
        self.message_index == self.pattern.get_message_patterns().len()
    }

    /// Get handshake hash. Useful for e.g., channel binding.
    ///
    /// Should be called after handshake is `completed()`.
    pub fn get_hash(&self) -> &[u8] {
        self.symmetric.get_hash()
    }

    /// Get ciphers that can be used to encrypt/decrypt furthur messages.
    /// The first `CiperState` is for initiator to responder, and the second for responder
    /// to initiator.
    ///
    /// Should be called after handshake is `completed()`.
    pub fn get_ciphers(&self) -> (CipherState<C>, CipherState<C>) {
        self.symmetric.split()
    }

    /// Get remote static pubkey, if available.
    pub fn get_rs(&self) -> Option<D::Pubkey> {
        self.rs.clone()
    }

    /// Get remote semi-ephemeral pubkey.
    ///
    /// Returns `None` if we do not know.
    ///
    /// Useful for noise-pipes.
    pub fn get_re(&self) -> Option<D::Pubkey> {
        self.re.clone()
    }

    fn perform_dh(&mut self, t: Token) {
        let dh = |a: Option<&D::Key>, b: Option<&D::Pubkey>| D::dh(a.unwrap(), b.unwrap());

        let k = match t {
            Token::EE => dh(self.e.as_ref(), self.re.as_ref()),
            Token::ES => {
                if self.is_initiator {
                    dh(self.e.as_ref(), self.rs.as_ref())
                } else {
                    dh(self.s.as_ref(), self.re.as_ref())
                }
            }
            Token::SE => {
                if self.is_initiator {
                    dh(self.s.as_ref(), self.re.as_ref())
                } else {
                    dh(self.e.as_ref(), self.rs.as_ref())
                }
            }
            Token::SS => dh(self.s.as_ref(), self.rs.as_ref()),
            _ => unreachable!(),
        };

        self.symmetric.mix_key(k.as_slice());
    }
}

/// Builder for `HandshakeState`.
pub struct HandshakeStateBuilder<'a, D: DH> {
    pattern: Option<HandshakePattern>,
    is_initiator: Option<bool>,
    prologue: Option<&'a [u8]>,
    psk: Option<&'a [u8]>,
    s: Option<D::Key>,
    e: Option<D::Key>,
    rs: Option<D::Pubkey>,
    re: Option<D::Pubkey>,
}

impl<'a, D> HandshakeStateBuilder<'a, D>
    where D: DH
{
    pub fn new() -> Self {
        HandshakeStateBuilder {
            pattern: None,
            is_initiator: None,
            prologue: None,
            psk: None,
            s: None,
            e: None,
            rs: None,
            re: None,
        }
    }

    pub fn set_pattern(&mut self, p: HandshakePattern) -> &mut Self {
        self.pattern = Some(p);
        self
    }

    pub fn set_is_initiator(&mut self, is: bool) -> &mut Self {
        self.is_initiator = Some(is);
        self
    }

    pub fn set_prologue(&mut self, prologue: &'a [u8]) -> &mut Self {
        self.prologue = Some(prologue);
        self
    }

    pub fn set_psk(&mut self, psk: &'a [u8]) -> &mut Self {
        self.psk = Some(psk);
        self
    }

    pub fn set_e(&mut self, e: D::Key) -> &mut Self {
        self.e = Some(e);
        self
    }

    pub fn set_s(&mut self, s: D::Key) -> &mut Self {
        self.s = Some(s);
        self
    }

    pub fn set_re(&mut self, re: D::Pubkey) -> &mut Self {
        self.re = Some(re);
        self
    }

    pub fn set_rs(&mut self, rs: D::Pubkey) -> &mut Self {
        self.rs = Some(rs);
        self
    }

    /// Build `HandshakeState`.
    ///
    /// # Panics
    ///
    /// `pattern`, `prologue` and `is_initiator` must be set.
    pub fn build_handshake_state<C, H>(self) -> HandshakeState<D, C, H>
        where C: Cipher,
              H: Hash
    {
        HandshakeState::new(self.pattern.unwrap(),
                            self.is_initiator.unwrap(),
                            self.prologue.unwrap(),
                            self.psk,
                            self.s,
                            self.e,
                            self.rs,
                            self.re)
    }
}