1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#![warn(missing_docs, missing_debug_implementations)]
#![allow(non_camel_case_types)]
#![no_std]

//! ## Simple & Performant Zero-Copy Serialization
//! Performance of Flatbuffers / Cap'N Proto with flexibility of JSON
//! 
//! [Github](https://github.com/ClickSimply/NoProto) | [Crates.io](https://crates.io/crates/no_proto) | [Documentation](https://docs.rs/no_proto)
//! 
//! ### Features  
//! - Zero dependencies
//! - Zero copy deserialization
//! - `no_std` support, WASM ready
//! - Native byte-wise sorting
//! - Extensive Documentation & Testing
//! - Easily mutate, add or delete values in existing buffers
//! - Schemas allow default values and non destructive updates
//! - Supports most common native data types
//! - Supports collection types (list, map, table & tuple)
//! - Supports deep nesting of collection types
//! - [Thoroughly documented](https://docs.rs/no_proto/latest/no_proto/format/index.html) & simple data storage format
//! 
//! NoProto allows you to store, read & mutate structured data with near zero overhead. It's like Cap'N Proto/Flatbuffers except buffers and schemas are dynamic at runtime instead of requiring compilation.  It's like JSON but faster, type safe and allows native types.
//! 
//! Byte-wise sorting comes in the box and is a first class operation. Two NoProto buffers can be compared at the byte level *without deserializing* and a correct ordering between the buffer's internal values will be the result.  This is extremely useful for storing ordered keys in databases. 
//! 
//! NoProto moves the cost of deserialization to the access methods instead of deserializing the entire object ahead of time (Incremental Deserialization). This makes it a perfect use case for things like database storage or file storage of structured data.
//! 
//! *Compared to FlatBuffers / Cap'N Proto / Protocol Buffers*
//! - Comparable serialization & deserialization performance
//! - Easier & Simpler API
//! - Schemas are dynamic at runtime, no compilation step
//! - Supports more types and better nested type support
//! - Byte-wise sorting is first class operation
//! - Mutate (add/delete/update) existing/imported buffers
//! 
//! *Compared to JSON*
//! - Usually more space efficient
//! - Deserializtion is zero copy
//! - Faster serialization & deserialization
//! - Has schemas / type safe
//! - Supports byte-wise sorting
//! - Supports raw bytes & other native types
//! 
//! *Compared to BSON*
//! - Usually more space efficient
//! - Deserializtion is zero copy
//! - Faster serialization & deserialization
//! - Has schemas / type safe
//! - Byte-wise sorting is first class operation
//! - Supports much larger documents (4GB vs 16KB)
//! - Better collection support & more supported types
//! 
//! *Compared to Serde*
//! - Supports byte-wise sorting
//! - Objects & schemas are dynamic at runtime
//! - Deserializtion is zero copy
//! - Language agnostic
//! 
//! | Format           | Zero-Copy | Size Limit | Mutable | Schemas | Language Agnostic | No Compiling    | Byte-wise Sorting |
//! |------------------|-----------|------------|---------|---------|-------------------|-----------------|-------------------|
//! | **NoProto**      | ✓         | ~4GB       | ✓       | ✓       | ✓                 | ✓               | ✓                 |
//! | JSON             | 𐄂         | Unlimited  | ✓       | 𐄂       | ✓                 | ✓               | 𐄂                 |
//! | BSON             | 𐄂         | ~16KB      | ✓       | 𐄂       | ✓                 | ✓               | 𐄂                 |
//! | MessagePack      | 𐄂         | Unlimited  | ✓       | 𐄂       | ✓                 | ✓               | 𐄂                 |
//! | FlatBuffers      | ✓         | ~2GB       | 𐄂       | ✓       | ✓                 | 𐄂               | 𐄂                 |
//! | Protocol Buffers | 𐄂         | ~2GB       | 𐄂       | ✓       | ✓                 | 𐄂               | 𐄂                 |
//! | Cap'N Proto      | ✓         | 2^64 Bytes | 𐄂       | ✓       | ✓                 | 𐄂               | 𐄂                 |
//! | Serde            | 𐄂         | ?          | 𐄂       | ✓       | 𐄂                 | 𐄂               | 𐄂                 |
//! | Veriform         | 𐄂         | ?          | 𐄂       | 𐄂       | 𐄂                 | 𐄂               | 𐄂                 |
//! 
//! 
//! # Quick Example
//! ```rust
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::collection::table::NP_Table;
//! 
//! // JSON is used to describe schema for the factory
//! // Each factory represents a single schema
//! // One factory can be used to serialize/deserialize any number of buffers
//! let user_factory = NP_Factory::new(r#"{
//!     "type": "table",
//!     "columns": [
//!         ["name",   {"type": "string"}],
//!         ["age",    {"type": "u16", "default": 0}],
//!         ["tags",   {"type": "list", "of": {
//!             "type": "string"
//!         }}]
//!     ]
//! }"#)?;
//! 
//! 
//! // create a new empty buffer
//! let mut user_buffer = user_factory.empty_buffer(None, None); // optional capacity, optional address size (u16 by default)
//! 
//! // set an internal value of the buffer, set the  "name" column
//! user_buffer.set(&["name"], "Billy Joel")?;
//! 
//! // assign nested internal values, sets the first tag element
//! user_buffer.set(&["tags", "0"], "first tag")?;
//! 
//! // get an internal value of the buffer from the "name" column
//! let name = user_buffer.get::<&str>(&["name"])?;
//! assert_eq!(name, Some("Billy Joel"));
//! 
//! // close buffer and get internal bytes
//! let user_bytes: Vec<u8> = user_buffer.close();
//! 
//! // open the buffer again
//! let user_buffer = user_factory.open_buffer(user_bytes);
//! 
//! // get nested internal value, first tag from the tag list
//! let tag = user_buffer.get::<&str>(&["tags", "0"])?;
//! assert_eq!(tag, Some("first tag"));
//! 
//! // get nested internal value, the age field
//! let age = user_buffer.get::<u16>(&["age"])?;
//! // returns default value from schema
//! assert_eq!(age, Some(0u16));
//! 
//! // close again
//! let user_bytes: Vec<u8> = user_buffer.close();
//! 
//! 
//! // we can now save user_bytes to disk, 
//! // send it over the network, or whatever else is needed with the data
//! 
//! // The schema can also be compiled into a byte array for more efficient schema parsing.
//! let byte_schema: Vec<u8> = user_factory.compile_schema();
//! 
//! // The byte schema can be used just like JSON schema, but it's WAY faster to parse.
//! let user_factory2 = NP_Factory::new_compiled(byte_schema);
//! 
//! // confirm the new byte schema works with existing buffers
//! let user_buffer = user_factory2.open_buffer(user_bytes);
//! let tag = user_buffer.get::<&str>(&["tags", "0"])?;
//! assert_eq!(tag, Some("first tag"));
//! 
//! 
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! 
//! ## Guided Learning / Next Steps:
//! 1. [`Schemas`](https://docs.rs/no_proto/latest/no_proto/schema/index.html) - Learn how to build & work with schemas.
//! 2. [`Factories`](https://docs.rs/no_proto/latest/no_proto/struct.NP_Factory.html) - Parsing schemas into something you can work with.
//! 3. [`Buffers`](https://docs.rs/no_proto/latest/no_proto/buffer/struct.NP_Buffer.html) - How to create, update & compact buffers/data.
//! 4. [`Data Format`](https://docs.rs/no_proto/latest/no_proto/format/index.html) - Learn how data is saved into the buffer.
//! 
//! 
//! #### Limitations
//! - Buffers cannot be larger than 2^32 bytes (~4GB).
//! - Lists cannot have more than 65,535 items.
//! - Enum/Option types are limited to 255 choices and choices cannot be larger than 255 bytes.
//! - Tables are limited to 255 columns and column names cannot be larger than 255 bytes.
//! - Tuple types are limited to 255 items.
//! - Buffers are not validated or checked before deserializing.
//! 
//! #### Non Goals / Known Tradeoffs
//! There are formats that focus on being as compact as possible.  While NoProto is not intentionally wasteful, it's primary focus is not on compactness.  If you need the smallest possible format MessagePack is a good choice.  It's all about tradeoffs, NoProto uses up extra bytes over other formats to make zero copy de/serialization, traversal and mutation as fast as possible.
//! 
//! If every CPU cycle counts, you don't mind compiling fixed schemas and you don't plan to mutate your buffers/objects, FlatBuffers/CapnProto is probably the way to go.  While NoProto makes good tradeoffs with flexibility and performance, it cannot be as fast as languages that compile the schema into source code.
//! 
//! ----------------------
//! 
//! MIT License
//! 
//! Copyright (c) 2020 Scott Lott
//! 
//! Permission is hereby granted, free of charge, to any person obtaining a copy
//! of this software and associated documentation files (the "Software"), to deal
//! in the Software without restriction, including without limitation the rights
//! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//! copies of the Software, and to permit persons to whom the Software is
//! furnished to do so, subject to the following conditions:
//! 
//! The above copyright notice and this permission notice shall be included in all
//! copies or substantial portions of the Software.
//! 
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//! SOFTWARE.

pub mod pointer;
pub mod collection;
pub mod buffer;
pub mod schema;
pub mod error;
pub mod json_flex;
pub mod format;
pub mod memory;
mod utils;

extern crate alloc;

use crate::json_flex::NP_JSON;
use crate::schema::NP_Schema;
use crate::json_flex::json_decode;
use crate::error::NP_Error;
use crate::memory::NP_Memory;
use buffer::{NP_Buffer};
use alloc::vec::Vec;
use alloc::{borrow::ToOwned};
use schema::NP_Parsed_Schema;
use crate::memory::NP_Size;

const PROTOCOL_VERSION: u8 = 1;

/// Factories are created from schemas.  Once you have a factory you can use it to create new buffers or open existing ones.
/// 
/// The easiest way to create a factory is to pass a JSON string schema into the static `new` method.  [Learn about schemas here.](./schema/index.html)
/// 
/// You can also create a factory with a compiled byte schema using the static `new_compiled` method.
/// 
/// # Example
/// ```
/// use no_proto::error::NP_Error;
/// use no_proto::NP_Factory;
/// 
/// let user_factory = NP_Factory::new(r#"{
///     "type": "table",
///     "columns": [
///         ["name",   {"type": "string"}],
///         ["pass",   {"type": "string"}],
///         ["age",    {"type": "uint16"}],
///         ["todos",  {"type": "list", "of": {"type": "string"}}]
///     ]
/// }"#)?;
/// 
/// // user_factory can now be used to make or open buffers that contain the data in the schema.
/// 
/// // create new buffer
/// let mut user_buffer = user_factory.empty_buffer(None, None); // optional capacity, optional address size
///    
/// // set the "name" column of the table
/// user_buffer.set(&["name"], "Billy Joel")?;
/// 
/// // set the first todo
/// user_buffer.set(&["todos", "0"], "Write a rust library.")?;
/// 
/// // close buffer 
/// let user_vec:Vec<u8> = user_buffer.close();
/// 
/// // open existing buffer for reading
/// let user_buffer_2 = user_factory.open_buffer(user_vec);
/// 
/// // read column value
/// let name_column = user_buffer_2.get::<&str>(&["name"])?;
/// assert_eq!(name_column, Some("Billy Joel"));
/// 
/// 
/// // read first todo
/// let todo_value = user_buffer_2.get::<&str>(&["todos", "0"])?;
/// assert_eq!(todo_value, Some("Write a rust library."));
/// 
/// // read second todo
/// let todo_value = user_buffer_2.get::<&str>(&["todos", "1"])?;
/// assert_eq!(todo_value, None);
/// 
/// 
/// // close buffer again
/// let user_vec: Vec<u8> = user_buffer_2.close();
/// // user_vec is a Vec<u8> with our data
/// 
/// # Ok::<(), NP_Error>(()) 
/// ```
/// 
/// ## Next Step
/// 
/// Read about how to use buffers to access, mutate and compact data.
/// 
/// [Go to NP_Buffer docs](./buffer/struct.NP_Buffer.html)
/// 
#[derive(Debug)]
pub struct NP_Factory {
    /// schema data used by this factory
    pub schema: NP_Schema,
    schema_bytes: Vec<u8>
}

impl NP_Factory {
    
    /// Generate a new factory from the given schema.
    /// 
    /// This operation will fail if the schema provided is invalid or if the schema is not valid JSON.  If it fails you should get a useful error message letting you know what the problem is.
    /// 
    pub fn new(json_schema: &str) -> Result<NP_Factory, NP_Error> {

        let parsed_value = json_decode(json_schema.to_owned())?;

    
        let (is_sortable, schema_bytes, schema) = NP_Schema::from_json(Vec::new(), &parsed_value)?;

        Ok(Self {
            schema_bytes: schema_bytes,
            schema:  NP_Schema {
                is_sortable: is_sortable,
                parsed: schema
            }
        })      
        
    }

    /// Create a new factory from a compiled schema byte array.
    /// The byte schemas are at least an order of magnitude faster to parse than JSON schemas.
    /// 
    pub fn new_compiled(schema_bytes: Vec<u8>) -> Self {
        
        let (is_sortable, schema) = NP_Schema::from_bytes(Vec::new(), 0, &schema_bytes);

        Self {
            schema_bytes: schema_bytes,
            schema:  NP_Schema { 
                is_sortable: is_sortable,
                parsed: schema
            }
        }
    }

    /// Get a copy of the compiled schema byte array
    /// 
    pub fn compile_schema(&self) -> Vec<u8> {
        self.schema_bytes.clone()
    }


    /// Exports this factorie's schema to JSON.  This works regardless of wether the factory was created with `NP_Factory::new` or `NP_Factory::new_compiled`.
    /// 
    pub fn export_schema(&self) -> Result<NP_JSON, NP_Error> {
        self.schema.to_json()
    }

    /// Open existing Vec<u8> as buffer for this factory.  
    /// This just moves the Vec<u8> into the buffer object, no deserialization or copying is done here.
    /// 
    pub fn open_buffer<'buffer>(&'buffer self, bytes: Vec<u8>) -> NP_Buffer<'buffer> {
        NP_Buffer::_new(NP_Memory::existing(bytes, &self.schema.parsed))
    }

    /// Generate a new empty buffer from this factory.
    /// 
    /// The first opional argument, capacity, can be used to set the space of the underlying Vec<u8> when it's created.  If you know you're going to be putting lots of data into the buffer, it's a good idea to set this to a large number comparable to the amount of data you're putting in.  The default is 1,024 bytes.
    /// 
    /// The second optional argument, ptr_size, controls how much address space you get in the buffer and how large the addresses are.  Every value in the buffer contains at least one address, sometimes more.  `NP_Size::U16` (the default) gives you an address space of just over 16KB but is more space efficeint since the address pointers are only 2 bytes each.  `NP_Size::U32` gives you an address space of just over 4GB, but the addresses take up twice as much space in the buffer compared to `NP_Size::U16`.
    /// You can change the address size through compaction after the buffer is created, so it's fine to start with a smaller address space and convert it to a larger one later as needed.  It's also possible to go the other way, you can convert larger address space down to a smaller one durring compaction.
    /// 
    pub fn empty_buffer<'buffer>(&'buffer self, capacity: Option<usize>, ptr_size: Option<NP_Size>) -> NP_Buffer<'buffer> {
        let use_size = match ptr_size {
            Some(x) => x,
            None => NP_Size::U16
        };
        NP_Buffer::_new(NP_Memory::new(capacity, use_size, &self.schema.parsed))
    }
}