RustShell v2.0 — Product Document

PRODUCT DOCUMENT
RustShell v2.0
AI-Powered Cross-Platform Shell Utility

The intelligent shell that speaks your language.

Prepared by: Efe Baran Durmaz
Arcadia
February 2026

github.com/EfeDurmaz16/rustshell

1. Executive Summary
RustShell, cross-platform bir shell aracıdır. Rust ile yazılmış olup, farklı işletim sistemlerinde (Windows, Linux, macOS) birleşik, doğal dil tabanlı komut arayüzü sunar. Geliştiricilerin platform bağımsız şekilde tutarlı komutlar kullanmalarını sağlar.
v2.0 ile RustShell, basit bir komut çevirici olmaktan çıkıp, AI destekli, görsel olarak zengin, çoklu LLM sağlayıcısını destekleyen modern bir developer tool haline gelecektir. Open-source topluluğa sunulacak ve crates.io üzerinden dağıtılacaktır.

	Hedef Vizyon
"cargo install rustshell" ile yükle, provider seç, doğal dilde komut yaz, terminalde çalıştır — hepsi görsel olarak zengin bir TUI içinde.

2. Mevcut Durum ve Sorunlar
2.1 Mevcut Özellikler
1. Cross-platform komut aliasları (make_dir, create_file, copy, move, delete_file vb.)
1. Interactive mod: Tab completion, komut geçmişi, alias yönetimi
1. OpenAI API ile doğal dil işleme
1. Komut piping desteği
1. Güvenlik kontrolleri (destructive işlemler için onay)

2.2 Tespit Edilen Sorunlar
	Sorun
	Detay
	Öncelik

	NLP Hata Yönetimi
	"kill port 3000, 8000 and 8081" gibi komutlar "No such file or directory (os error 2)" hatası veriyor. NLP arka planında parse edilen komut doğrudan dosya olarak çalıştırılıyor.
	Kritik

	Tek LLM Bağımlılığı
	Sadece OpenAI destekleniyor. Maliyet yüksek, hız düşük.
	Yüksek

	Görsel Tasarım
	Terminal arayüzü çok basit, renkler ve TUI yok.
	Yüksek

	Otomatik Çalıştırma Riski
	Approve/auto-run modu yok. Her komut doğrudan çalışıyor.
	Yüksek

	Dağıtım
	crates.io'da yayınlanmamış. Shell completions yok.
	Orta

3. v2.0 Mimari Tasarım
3.1 LLM Provider Sistemi
Modular bir provider sistemi ile birden fazla LLM backend desteklenecek. Kullanıcı ilk kurulumda veya "rustshell config" komutuyla tercih ettiği provider'ı seçecek.

	Provider
	API Endpoint
	Avantajlar
	Kullanım

	Groq (Varsayılan)
	api.groq.com/openai/v1
	Ultra hızlı inference, düşük maliyet, ücretsiz tier
	GROQ_API_KEY

	Ollama (Lokal)
	localhost:11434/api
	Ücretsiz, gizlilik, çevrimdışı çalışır
	Otomatik algılama

	OpenAI
	api.openai.com/v1
	Geniş model seçeneği, yüksek kalite
	OPENAI_API_KEY

	Anthropic
	api.anthropic.com/v1
	Claude modelleri, güçlü reasoning
	ANTHROPIC_API_KEY

	Custom OpenAI-compat.
	Kullanıcı tanımlı
	Herhangi bir OpenAI uyumlu API
	Config dosyası

3.2 Setup Akışı (First-Run Experience)
Kullanıcı "cargo install rustshell" sonrasında ilk çalıştırmada interaktif bir setup wizard ile karşılaşacak:

1. Hos geldiniz mesajı ve RustShell logosu (ASCII art, renkli)
1. LLM Provider seçimi: Groq (hızlı & ucuz), Ollama (lokal, ücretsiz), OpenAI, Anthropic, Custom
1. API key girişi (Ollama harici) veya Ollama auto-detect
1. Model seçimi (provider'a göre önerilen modeller listelenir)
1. Execution modu: Approve (varsayılan) veya Auto-run
1. Shell completions kurulumu (bash/zsh/fish otomatik algıla)
1. Config ~/.rustshell/config.toml'a kaydedilir

3.3 Execution Modları
Kullanıcı güvenliği için iki farklı çalıştırma modu:

	Mod
	Davranış
	Kullanım

	Approve (Varsayılan)
	NLP komutu çözümlenir, kullanıcıya gösterilir, onay beklenir. [Y/n/e] ile kabul, red veya edit.
	Güvenli kullanım, öğrenme, production

	Auto-run
	NLP komutu çözümlenir ve doğrudan çalıştırılır. Destructive komutlarda (rm, del) yine onay ister.
	Deneyimli kullanıcılar, scripting

	Dry-run
	Komutu gösterir ama çalıştırmaz. Öğrenme ve test için ideal.
	Eğitim, debug

	Önemli
Approve modunda NLP çıktısı: “💡 Çeviri: kill $(lsof -ti:3000) && kill $(lsof -ti:8000) && kill $(lsof -ti:8081)” şeklinde renkli ve anlaşılır biçimde gösterilecek. Kullanıcı [Y] ile onaylayabilir, [e] ile düzenleyebilir.

4. TUI Tasarımı (Terminal User Interface)
Ratatui + Crossterm kullanılarak modern, renkli ve responsive bir terminal arayüzü oluşturulacak.

4.1 Görsel Bileşenler
	Bileşen
	Açıklama
	Teknoloji

	Özel Prompt
	Starship benzeri renkli prompt: dizin, git branch, provider ikonu
	crossterm::style

	Komut Önızleme Paneli
	NLP çıktısını syntax highlighting ile gösterir
	ratatui Paragraph

	Durum Çubuğu
	Provider, model, mod bilgisi alt çubukta
	ratatui Block

	Spinner/Progress
	LLM yanıt beklerken animasyonlu spinner
	indicatif veya custom

	Geçmiş Paneli
	Son komutları gösterir, yukarı/aşağı scroll
	ratatui List

	Hata Görüntüleme
	Hatalar kırmızı kutu içinde, önerileriyle birlikte
	ratatui styled Block

	ASCII Logo
	Başlangıçta renkli RustShell logosu
	crossterm colors

4.2 Renk Paleti
	Öğe
	Renk
	Hex Kodu

	Prompt ok
	Canlı yeşil
	#50FA7B

	Dizin yolu
	Mavi
	#8BE9FD

	Git branch
	Mor
	#BD93F9

	Hata mesajları
	Kırmızı
	#FF5555

	NLP çıktısı
	Sarı
	#F1FA8C

	Başarı mesajı
	Yeşil
	#50FA7B

	Bilgi/Muted
	Gri
	#6272A4

	Komut metni
	Beyaz
	#F8F8F2

5. Özellik Yol Haritası
5.1 Faz 1: Temel İyileştirmeler (Hafta 1–2)
Bug fix'ler, LLM provider sistemi ve temel TUI.

NLP Hata Düzeltmesi
1. NLP çıktısını doğrudan shell'e göndermek yerine, önce parse et ve validate et
1. Hatalı komutlarda kullanıcıya anlamlı hata mesajı göster
1. "kill port X" gibi komutlar için platform-specific çözüm üret (lsof -ti:X on macOS/Linux, netstat on Windows)
1. Fallback: NLP başarısız olursa, doğal dil hatasını açıkla

Multi-Provider LLM
1. Groq varsayılan provider olarak entegre et (hızlı, ucuz, ücretsiz tier)
1. Ollama auto-detect: localhost:11434 kontrol et, varsa lokal model öner
1. OpenAI ve Anthropic desteği ekle
1. Config dosyasında provider/model/api_key yönetimi
1. "rustshell config" interactive setup komutu

Execution Modları
1. Approve modu: NLP çıktısını göster, [Y/n/e] ile onay al
1. Auto-run modu: Direkt çalıştır (destructive komutlarda hala onay)
1. Dry-run modu: Sadece göster, çalıştırma
1. --approve, --auto, --dry-run CLI flagleri

Temel TUI
1. crossterm ile renkli output
1. Prompt: ❯ dizin (git-branch) [provider]
1. Spinner: LLM yanıt beklerken animasyon
1. Hata mesajları renkli ve kutu içinde

	Commit Stratejisi — Faz 1
Her alt özellik ayrı bir commit olmalı. Örnek: "fix: NLP error handling for port kill commands", "feat: add Groq as default LLM provider", "feat: add approve/auto-run execution modes", "ui: add colored prompt and spinner". Her 3–4 dosya değişikliğinde context compact yapılmalı.

5.2 Faz 2: Gelişmiş TUI & UX (Hafta 3–4)
Ratatui entegrasyonu, shell completions ve kullanıcı deneyimi iyileştirmeleri.

Ratatui TUI
1. Tam ratatui entegrasyonu: layout, widgets, event handling
1. Komut önizleme paneli: NLP çıktısı syntax highlighted
1. Durum çubuğu: Provider, model, execution mod göstergesi
1. Geçmiş paneli: Son komutlar listesi, scroll desteği
1. ASCII art logo başlangıç ekranı

Shell Completions
1. clap + clap_complete entegrasyonu
1. Bash, Zsh, Fish, PowerShell desteği
1. "rustshell completions <shell>" komutu ile runtime generation
1. Setup wizard'da otomatik shell algılama ve kurulum

Gelişmiş Alias Sistemi
1. Parametreli alias desteği: alias deploy "git push origin {branch}"
1. Alias grupları: Proje bazlı alias setleri
1. Alias import/export: JSON/TOML formatı
1. Doğal dil alias önerileri: Sık kullandığın komutlar için alias öner

Gelişmiş Auto-complete
1. Dosya yolu completion (mevcut dizin tarama)
1. Komut geçmişi bazlı öneriler (atuin benzeri)
1. Provider/model isimleri için completion
1. Fuzzy matching desteği

	Commit Stratejisi — Faz 2
"feat: integrate ratatui TUI framework", "feat: add shell completions via clap_complete", "feat: parametric alias system", "feat: fuzzy autocomplete for commands". Ratatui entegrasyonu büyük bir değişiklik — her widget ayrı commit'te olsun. Sık context compact!

5.3 Faz 3: crates.io & CI/CD (Hafta 5)
crates.io Yayınlama
1. Cargo.toml metadata: description, license (MIT), keywords, categories, repository
1. README.md güncelleme: badges, kurulum talimatları, GIF demo
1. cargo publish ile yayınlama
1. "rustshell" isim müsaitliğini kontrol et (alternatif: rshell, rustsh)

GitHub Actions CI/CD
1. Cross-platform test: Ubuntu, macOS, Windows matrix
1. Clippy lint + rustfmt kontrolleri
1. cargo test otomatik çalıştırma
1. Release workflow: tag push ile otomatik crates.io publish
1. Binary release: GitHub Releases'a pre-compiled binary yükleme

Dokümantasyon
1. cargo doc ile API dokümantasyonu
1. CONTRIBUTING.md: Katkı kılavuzu
1. CHANGELOG.md: Sürüm notları
1. Asciinema veya VHS ile terminal GIF demo

	Commit Stratejisi — Faz 3
"chore: prepare Cargo.toml for crates.io publish", "ci: add cross-platform GitHub Actions workflow", "docs: add comprehensive README with badges and GIF", "release: v2.0.0"

5.4 Faz 4: Gelişmiş Özellikler (Hafta 6+)
Command Context & Memory
1. Son N komutun context olarak LLM'ye gönderilmesi
1. "then" / "also" gibi devam komutları: "şimdi bu dosyayı da sil"
1. Proje bazlı context: package.json, Cargo.toml vb. okuyarak akıllı öneriler

Script Modu
1. .rsh dosyaları ile RustShell scriptleri yazma
1. Doğal dil ve shell komutları karışık kullanım
1. Değişkenler, koşullar ve döngüler

Plugin Sistemi
1. Rust trait bazlı plugin API
1. Community plugin desteği
1. Örnek pluginler: Docker, Kubernetes, Git, npm/cargo shortcuts

Telemetri ve Analytics (Opsiyonel)
1. Anonim kullanım istatistikleri (opt-in)
1. En çok kullanılan komutlar, provider dağılımı
1. Hata raporlama (sentry benzeri, opt-in)

6. Teknoloji Stack
	Katman
	Teknoloji
	Amaç

	Dil
	Rust (2021 edition)
	Performans, güvenlik, cross-platform

	CLI Framework
	clap v4 + clap_complete
	Argüman parse, shell completions

	TUI
	ratatui + crossterm
	Terminal UI, renkler, layout

	HTTP Client
	reqwest (async)
	LLM API çağrıları

	Async Runtime
	tokio
	Async HTTP, event loop

	Serialization
	serde + serde_json + toml
	Config dosyaları, API yanıtları

	Error Handling
	anyhow + thiserror
	Ergonomik hata yönetimi

	Prompt/Input
	rustyline veya reedline
	Interactive input, geçmiş

	Spinner
	indicatif
	Progress bar ve spinner

	Testing
	cargo test + assert_cmd
	Unit ve integration testler

	CI/CD
	GitHub Actions
	Cross-platform build/test/release

7. Proje Yapısı (Önerilen)
Modular ve genişletilebilir bir yapı için aşağıdaki dizin düzeni önerilir:

	Dizin/Dosya
	Açıklama

	src/main.rs
	Giriş noktası, CLI arg parse

	src/cli.rs
	clap komut tanımları

	src/config.rs
	Config yönetimi, setup wizard

	src/providers/mod.rs
	LLM provider trait ve factory

	src/providers/groq.rs
	Groq API client

	src/providers/ollama.rs
	Ollama (lokal) client

	src/providers/openai.rs
	OpenAI API client

	src/providers/anthropic.rs
	Anthropic API client

	src/executor.rs
	Komut çalıştırma ve mod yönetimi

	src/commands/mod.rs
	Built-in komut yöneticisi

	src/tui/mod.rs
	TUI layout ve event loop

	src/tui/prompt.rs
	Custom prompt widget

	src/tui/preview.rs
	Komut önizleme paneli

	src/tui/status.rs
	Durum çubuğu

	src/tui/theme.rs
	Renk paleti ve tema

	src/alias.rs
	Alias yönetimi

	src/completions.rs
	Shell completions

	src/history.rs
	Komut geçmişi

	config/rustshell.toml
	Varsayılan config şablonu

	tests/
	Integration testleri

	.github/workflows/
	CI/CD pipeline

8. Config Dosya Formatı
~/.rustshell/config.toml dosyası:

	Alan
	Değerler
	Varsayılan

	provider
	"groq" | "ollama" | "openai" | "anthropic" | "custom"
	"groq"

	model
	Provider'a özel model ismi
	"llama-3.1-70b-versatile"

	api_key_env
	Ortam değişkeni adı
	"GROQ_API_KEY"

	execution_mode
	"approve" | "auto" | "dry-run"
	"approve"

	ollama_url
	Ollama endpoint
	"http://localhost:11434"

	custom_url
	Custom provider URL
	""

	theme
	"dracula" | "monokai" | "nord" | "default"
	"dracula"

	history_size
	Geçmiş boyutu
	1000

	context_commands
	NLP'ye gönderilen önceki komut sayısı
	3

9. Rekabet Analizi
	Araç
	Özellikler
	RustShell Farkı

	Nushell
	Modern shell, yapısal data, Rust tabancalı
	RustShell AI-native, NLP-first yaklaşım

	Warp Terminal
	AI destekli terminal, güzel UI
	RustShell açık kaynak, multi-provider

	GitHub Copilot CLI
	AI komut önerileri
	RustShell bağımsız, multi-LLM, TUI

	atuin
	Akıllı shell geçmişi
	RustShell NLP + geçmiş birlikte

	Fig/Amazon Q
	Auto-complete, AI önerileri
	RustShell tam shell deneyimi, lokal LLM

10. Open-Source Lansman Stratejisi
10.1 İlk Lansman (Öncesi)
1. README.md: GIF demo, net kurulum talimatı, feature listesi
1. Asciinema veya VHS ile terminal kaydı (30sn demo)
1. Badges: CI status, crates.io version, license, downloads
1. CONTRIBUTING.md ve issue templates hazırla

10.2 Duyuru Kanalları
1. Reddit: r/rust, r/commandline, r/programming
1. Hacker News: Show HN post
1. Twitter/X: Rust community'ye yönelik thread
1. Dev.to / Hashnode: "Building an AI shell in Rust" blog yazısı
1. This Week in Rust: Proje duyurusu
1. awesome-rust listesine PR aç

10.3 Topluluk Büyütme
1. "good first issue" etiketli issue'lar hazırla
1. Plugin API dokümante et, topluluk katkısını teşvik et
1. Discord/GitHub Discussions aç
1. Haftalık release notları yayınla

11. Geliştirme Kuralları
	❗ Kritik: Commit & Context Compact Kuralları
Claude Code veya herhangi bir AI agent ile geliştirme yaparken aşağıdaki kurallar kesinlikle uygulanmalıdır. Aksi halde context kaybı nedeniyle hatalar ve tutarsızlıklar oluşur.

11.1 Commit Kuralları
1. Her mantiksal değişiklik ayrı bir commit olmalı (atomic commits)
1. Conventional Commits formatı: feat:, fix:, chore:, docs:, ci:, ui:, refactor:
1. Her yeni dosya oluşturulduktan sonra commit yap
1. Her bug fix sonrası hemen commit yap
1. Büyük özellikler (TUI, provider) için feature branch kullan
1. Commit mesajı 80 karakteri geçmesin
1. Örnek: "feat(providers): add Groq API client with streaming support"

11.2 Context Compact Kuralları
1. Her 3–4 dosya değişikliğinden sonra context compact yap
1. Yeni bir faz/özellik grubuna geçmeden önce context compact yap
1. Hata aldığında ve debug sürecine girmeden önce context compact yap
1. Büyük refactoring öncesi kesinlikle context compact yap
1. Context compact yapmadan önce mutlaka git commit yap (yoksa değişiklikler kaybolabilir)

11.3 Geliştirme Sırası
Aşağıdaki sırayla geliştirme yapılmalıdır. Her adımdan sonra commit + test:

1. NLP hata düzeltmesi (mevcut bug'ları önce fix et)
1. Provider trait ve Groq entegrasyonu
1. Ollama auto-detect ve entegrasyon
1. Config sistemi ve setup wizard
1. Execution modları (approve/auto/dry-run)
1. Temel renkli output (crossterm)
1. Ratatui TUI entegrasyonu
1. Shell completions (clap_complete)
1. Alias sistemi geliştirmesi
1. crates.io hazırlık ve publish
1. CI/CD pipeline
1. Dokümantasyon ve README

12. Başarı Metrikleri
	Metrik
	Hedef (3 ay)
	Hedef (6 ay)

	GitHub Stars
	100+
	500+

	crates.io Downloads
	500+
	2000+

	Contributors
	3+
	10+

	Open Issues
	< 10 açık bug
	< 5 açık bug

	LLM Providers
	3 (Groq, Ollama, OpenAI)
	5+ (+ Anthropic, Custom)

	Shell Completions
	Bash, Zsh, Fish
	+ PowerShell, Elvish

	Test Coverage
	> 60%
	> 80%

RustShell v2.0 — The intelligent shell that speaks your language.
Built with Rust. Powered by AI. Open Source.
Page
