1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
//! # nlopt
//!
//! This is a wrapper for `nlopt`, a C library of useful optimization
//! algorithms For details of the various algorithms,
//! consult the [nlopt docs](https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/)

use std::os::raw::{c_uint, c_ulong, c_void};
use std::slice;

#[allow(non_camel_case_types)]
#[allow(non_upper_case_globals)]
mod nlopt_sys;

use nlopt_sys as sys;

/// Target object function state
#[derive(Debug, Clone, Copy)]
pub enum Target {
    Maximize,
    Minimize,
}

#[repr(u32)]
#[derive(Clone, Copy, Debug)]
pub enum Algorithm {
    Direct = sys::nlopt_algorithm_NLOPT_GN_DIRECT,
    DirectL = sys::nlopt_algorithm_NLOPT_GN_DIRECT_L,
    DirectLRand = sys::nlopt_algorithm_NLOPT_GN_DIRECT_L_RAND,
    DirectNoscal = sys::nlopt_algorithm_NLOPT_GN_DIRECT_NOSCAL,
    DirectLNoscal = sys::nlopt_algorithm_NLOPT_GN_DIRECT_L_NOSCAL,
    DirectLRandNoscal = sys::nlopt_algorithm_NLOPT_GN_DIRECT_L_RAND_NOSCAL,
    OrigDirect = sys::nlopt_algorithm_NLOPT_GN_ORIG_DIRECT,
    OrigDirectL = sys::nlopt_algorithm_NLOPT_GN_ORIG_DIRECT_L,
    Crs2Lm = sys::nlopt_algorithm_NLOPT_GN_CRS2_LM,

    GMlsl = sys::nlopt_algorithm_NLOPT_G_MLSL,
    GMlslLds = sys::nlopt_algorithm_NLOPT_G_MLSL_LDS,
    GnMlsl = sys::nlopt_algorithm_NLOPT_GN_MLSL,
    GdMlsl = sys::nlopt_algorithm_NLOPT_GD_MLSL,
    GnMlslLds = sys::nlopt_algorithm_NLOPT_GN_MLSL_LDS,
    GdMlslLds = sys::nlopt_algorithm_NLOPT_GD_MLSL_LDS,

    StoGo = sys::nlopt_algorithm_NLOPT_GD_STOGO,
    StoGoRand = sys::nlopt_algorithm_NLOPT_GD_STOGO_RAND,
    Isres = sys::nlopt_algorithm_NLOPT_GN_ISRES,
    Esch = sys::nlopt_algorithm_NLOPT_GN_ESCH,

    Cobyla = sys::nlopt_algorithm_NLOPT_LN_COBYLA,
    Bobyqa = sys::nlopt_algorithm_NLOPT_LN_BOBYQA,
    Newuoa = sys::nlopt_algorithm_NLOPT_LN_NEWUOA,
    NewuoaBound = sys::nlopt_algorithm_NLOPT_LN_NEWUOA_BOUND,
    Praxis = sys::nlopt_algorithm_NLOPT_LN_PRAXIS,
    Neldermead = sys::nlopt_algorithm_NLOPT_LN_NELDERMEAD,
    Sbplx = sys::nlopt_algorithm_NLOPT_LN_SBPLX,

    Mma = sys::nlopt_algorithm_NLOPT_LD_MMA,
    Slsqp = sys::nlopt_algorithm_NLOPT_LD_SLSQP,
    Lbfgs = sys::nlopt_algorithm_NLOPT_LD_LBFGS,
    LbfgsNocedal = sys::nlopt_algorithm_NLOPT_LD_LBFGS_NOCEDAL,

    LdVar1 = sys::nlopt_algorithm_NLOPT_LD_VAR1,
    LdVar2 = sys::nlopt_algorithm_NLOPT_LD_VAR2,

    TNewton = sys::nlopt_algorithm_NLOPT_LD_TNEWTON,
    TNewtonRestart = sys::nlopt_algorithm_NLOPT_LD_TNEWTON_RESTART,
    TNewtonPrecond = sys::nlopt_algorithm_NLOPT_LD_TNEWTON_PRECOND,
    TNewtonPrecondRestart = sys::nlopt_algorithm_NLOPT_LD_TNEWTON_PRECOND_RESTART,

    Auglag = sys::nlopt_algorithm_NLOPT_AUGLAG,
    AuglagEq = sys::nlopt_algorithm_NLOPT_AUGLAG_EQ,
    LnAuglag = sys::nlopt_algorithm_NLOPT_LN_AUGLAG,
    LdAuglagEq = sys::nlopt_algorithm_NLOPT_LD_AUGLAG_EQ,
    LdAuglag = sys::nlopt_algorithm_NLOPT_LD_AUGLAG,
    LnAuglagEq = sys::nlopt_algorithm_NLOPT_LN_AUGLAG_EQ,

    Ccsaq = sys::nlopt_algorithm_NLOPT_LD_CCSAQ,
}

#[repr(i32)]
#[derive(Debug, Clone, Copy)]
pub enum FailState {
    Failure = sys::nlopt_result_NLOPT_FAILURE,
    InvalidArgs = sys::nlopt_result_NLOPT_INVALID_ARGS,
    OutOfMemory = sys::nlopt_result_NLOPT_OUT_OF_MEMORY,
    RoundoffLimited = sys::nlopt_result_NLOPT_ROUNDOFF_LIMITED,
    ForcedStop = sys::nlopt_result_NLOPT_FORCED_STOP,
}

#[repr(i32)]
#[derive(Debug, Clone, Copy)]
pub enum SuccessState {
    Success = sys::nlopt_result_NLOPT_SUCCESS,
    StopValReached = sys::nlopt_result_NLOPT_STOPVAL_REACHED,
    FtolReached = sys::nlopt_result_NLOPT_FTOL_REACHED,
    XtolReached = sys::nlopt_result_NLOPT_XTOL_REACHED,
    MaxEvalReached = sys::nlopt_result_NLOPT_MAXEVAL_REACHED,
    MaxTimeReached = sys::nlopt_result_NLOPT_MAXTIME_REACHED,
}

pub type OptResult = std::result::Result<SuccessState, FailState>;

fn result_from_outcome(outcome: sys::nlopt_result) -> OptResult {
    use FailState::*;
    use SuccessState::*;
    if outcome < 0 {
        let err = match outcome {
            sys::nlopt_result_NLOPT_FAILURE => Failure,
            sys::nlopt_result_NLOPT_INVALID_ARGS => InvalidArgs,
            sys::nlopt_result_NLOPT_OUT_OF_MEMORY => OutOfMemory,
            sys::nlopt_result_NLOPT_ROUNDOFF_LIMITED => RoundoffLimited,
            sys::nlopt_result_NLOPT_FORCED_STOP => ForcedStop,
            v => panic!("Unknown fail state {}", v),
        };
        Err(err)
    } else {
        let ok = match outcome {
            sys::nlopt_result_NLOPT_SUCCESS => Success,
            sys::nlopt_result_NLOPT_STOPVAL_REACHED => StopValReached,
            sys::nlopt_result_NLOPT_FTOL_REACHED => FtolReached,
            sys::nlopt_result_NLOPT_XTOL_REACHED => XtolReached,
            sys::nlopt_result_NLOPT_MAXEVAL_REACHED => MaxEvalReached,
            sys::nlopt_result_NLOPT_MAXTIME_REACHED => MaxTimeReached,
            v => panic!("Unknown success state {}", v),
        };
        Ok(ok)
    }
}

extern "C" fn function_raw_callback<F, T>(
    n: c_uint,
    x: *const f64,
    g: *mut f64,
    params: *mut c_void,
) -> f64
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    // recover Function object from supplied params
    let f = unsafe { &mut *(params as *mut FunctionCfg<F, T>) };

    // prepare args
    let argument = unsafe { slice::from_raw_parts(x, n as usize) };
    let gradient = if g.is_null() {
        None
    } else {
        Some(unsafe { slice::from_raw_parts_mut(g, n as usize) })
    };

    // call
    let res = (f.objective_fn)(argument, gradient, &mut f.user_data);
    // Important: we don't want f to get dropped at this point
    std::mem::forget(f);
    res
}

extern "C" fn constraint_raw_callback<F, T>(
    n: c_uint,
    x: *const f64,
    g: *mut f64,
    params: *mut c_void,
) -> f64
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    // Since ConstraintCfg is just an alias for FunctionCfg,
    // this function is identical to above
    let f = unsafe { &mut *(params as *mut ConstraintCfg<F, T>) };
    let argument = unsafe { slice::from_raw_parts(x, n as usize) };
    let gradient = if g.is_null() {
        None
    } else {
        Some(unsafe { slice::from_raw_parts_mut(g, n as usize) })
    };
    let res = (f.objective_fn)(argument, gradient, &mut f.user_data);
    // Important: we don't want f to get dropped at this point
    std::mem::forget(f);
    res
}

extern "C" fn mfunction_raw_callback<F, T>(
    m: u32,
    re: *mut f64,
    n: u32,
    x: *const f64,
    g: *mut f64,
    d: *mut c_void,
) where
    F: Fn(&mut [f64], &[f64], Option<&mut [f64]>, &mut T),
{
    let f = unsafe { &mut *(d as *mut MConstraintCfg<F, T>) };
    let re = unsafe { slice::from_raw_parts_mut(re, m as usize) };
    let argument = unsafe { slice::from_raw_parts(x, n as usize) };
    let gradient: Option<&mut [f64]> = if g.is_null() {
        None
    } else {
        Some(unsafe { slice::from_raw_parts_mut(g, (n as usize) * (m as usize)) })
    };
    (f.constraint)(re, argument, gradient, &mut f.user_data);
    // Important: we don't want f to get dropped at this point
    std::mem::forget(f);
}

/// This is the central ```struct``` of this library. It represents an optimization of a given
/// function, called the objective function. The argument `x` to this function is an
/// `n`-dimensional double-precision vector. The dimensions are set at creation of the struct and
/// cannot be changed afterwards. NLopt offers different optimization algorithms. One must be
/// chosen at struct creation and cannot be changed afterwards. Always use ```Nlopt::<T>::new()``` to create an `Nlopt` struct.
pub struct Nlopt<F, T>
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    _algorithm: Algorithm,
    pub n_dims: usize,
    target: Target,
    nloptc_obj: sys::nlopt_opt,
    #[allow(dead_code)]
    fn_cfg: FunctionCfg<F, T>,
}

/// Packs an objective function with a user defined parameter set of type `T`.
struct FunctionCfg<F, T>
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    pub objective_fn: F,
    pub user_data: T,
}

type ConstraintCfg<F, T> = FunctionCfg<F, T>;

/// A function `f(x) | R^n --> R^m` with additional user specified parameters `user_data` of type `T`.
///
/// * `result` - `m`-dimensional array to store the value `f(x)`
/// * `argument` - `n`-dimensional array `x`
/// * `gradient` - `n×m`-diconstraint array to store the gradient `grad f(x)`. The n dimension of
/// gradient is stored contiguously, so that `df_i / dx_j` is stored in `gradient[i*n + j]`. If
/// `gradient` is `Some(x)`, the user is required to return a valid gradient, otherwise the
/// optimization will most likely fail.
/// * `user_data` - user defined data
pub type MObjectiveFn<T> =
    fn(result: &mut [f64], argument: &[f64], gradient: Option<&mut [f64]>, user_data: &mut T);

/// Packs an `m`-dimensional function of type `NLoptMFn<T>` with a user defined parameter set of type `T`.
struct MConstraintCfg<F, T>
where
    F: Fn(&mut [f64], &[f64], Option<&mut [f64]>, &mut T),
{
    constraint: F,
    user_data: T,
}

type ObjFn<T> = fn(&[f64], Option<&mut [f64]>, &mut T) -> f64;

impl<F, T> Nlopt<F, T>
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    /// Creates a new `Nlopt` struct.
    ///
    /// * `algorithm` - Which optimization algorithm to use. This cannot be changed after creation
    /// of the struct
    /// * `n_dims` - Dimension of the argument to the objective function
    /// * `objective_fn` - This function has the signature `(&[f64],
    /// Option<&mut [f64]>, T) -> f64`. The first argument is the vector `x` passed to the function.
    /// The second argument is `Some(&mut [f64])` if the calling optimization algorithm needs
    /// the gradient of the function. If the gradient is not needed, it is `None`. The last
    /// argument is the user data provided beforehand using the `user_data` argument to the
    /// constructor.
    /// * `target` - Whether to minimize or maximize the objective function
    /// * `user_data` - Optional data that is passed to the objective function
    pub fn new(
        algorithm: Algorithm,
        n_dims: usize,
        objective_fn: F,
        target: Target,
        user_data: T,
    ) -> Nlopt<F, T> {
        // TODO this might be better off as a builder pattern
        let nloptc_obj = unsafe { sys::nlopt_create(algorithm as u32, n_dims as u32) };
        let nlopt = Nlopt {
            _algorithm: algorithm,
            n_dims: n_dims,
            target,
            nloptc_obj,
            fn_cfg: FunctionCfg {
                objective_fn,
                user_data,
            },
        };
        // Our strategy is to pass the actual objective function as part of the
        // parameters to the callback. For this we pack it inside a Function struct.
        // We allocation our Function on the heap and pass a pointer to the C lib
        // (This is pretty unsafe but works).
        // `into_raw` will leak the boxed object
        let fn_cfg_ptr =
            &nlopt.fn_cfg as *const FunctionCfg<F, T> as *mut FunctionCfg<F, T> as *mut c_void;
        match target {
            Target::Minimize => unsafe {
                sys::nlopt_set_min_objective(
                    nlopt.nloptc_obj,
                    Some(function_raw_callback::<F, T>),
                    fn_cfg_ptr,
                )
            },
            Target::Maximize => unsafe {
                sys::nlopt_set_max_objective(
                    nlopt.nloptc_obj,
                    Some(function_raw_callback::<F, T>),
                    fn_cfg_ptr,
                )
            },
        };
        nlopt
    }

    /// Most of the algorithms in NLopt are designed for minimization of functions with simple bound
    /// constraints on the inputs. That is, the input vectors `x` are constrainted to lie in a
    /// hyperrectangle `lower_bound[i] ≤ x[i] ≤ upper_bound[i] for 0 ≤ i < n`.
    /// NLopt guarantees that your objective
    /// function and any nonlinear constraints will never be evaluated outside of these bounds
    /// (unlike nonlinear constraints, which may be violated at intermediate steps).
    ///
    /// These bounds are specified by passing an array `bound` of length `n` (the dimension of the
    /// problem) to one or both of the functions:
    ///
    /// `set_lower_bounds(&[f64])`
    ///
    /// `set_upper_bounds(&[f64])`
    ///
    /// If a lower/upper bound is not set, the default is no bound (unconstrained, i.e. a bound of
    /// infinity); it is possible to have lower bounds but not upper bounds or vice versa.
    /// Alternatively, the user can call one of the above functions and explicitly pass a lower
    /// bound of `-INFINITY` and/or an upper bound of `+INFINITY` for some optimization parameters to
    /// make them have no lower/upper bound, respectively.
    ///
    /// It is permitted to set `lower_bound[i] == upper_bound[i]` in one or more dimensions;
    /// this is equivalent to fixing the corresponding `x[i]` parameter, eliminating it
    /// from the optimization.
    ///
    /// Note, however, that some of the algorithms in NLopt, in particular most of the
    /// global-optimization algorithms, do not support unconstrained optimization and will return an
    /// error in `optimize` if you do not supply finite lower and upper bounds.
    pub fn set_lower_bounds(&mut self, bound: &[f64]) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_lower_bounds(self.nloptc_obj, bound.as_ptr()) })
    }

    /// See documentation for `set_lower_bounds`
    pub fn set_upper_bounds(&mut self, bound: &[f64]) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_upper_bounds(self.nloptc_obj, bound.as_ptr()) })
    }

    /// For convenience, `set_lower_bound` is supplied in order to set the lower
    /// bounds for all optimization parameters to a single constant
    pub fn set_lower_bound(&mut self, bound: f64) -> OptResult {
        let v = vec![bound; self.n_dims];
        self.set_lower_bounds(&v)
    }

    /// For convenience, `set_upper_bound` is supplied in order to set the upper
    /// bounds for all optimization parameters to a single constant
    pub fn set_upper_bound(&mut self, bound: f64) -> OptResult {
        let v = vec![bound; self.n_dims];
        self.set_upper_bounds(&v)
    }

    /// Retrieve the current upper bonds on `x`
    pub fn get_upper_bounds(&self) -> Option<&[f64]> {
        let mut bound: Vec<f64> = vec![0.0 as f64; self.n_dims];
        let b = bound.as_mut_ptr();
        unsafe {
            let ret = sys::nlopt_get_upper_bounds(self.nloptc_obj, b as *mut f64);
            match ret {
                x if x < 0 => None,
                _ => Some(slice::from_raw_parts(b as *mut f64, self.n_dims)),
            }
        }
    }

    /// Retrieve the current lower bonds on `x`
    pub fn get_lower_bounds(&self) -> Option<&[f64]> {
        let mut bound: Vec<f64> = vec![0.0 as f64; self.n_dims];
        let b = bound.as_mut_ptr();
        unsafe {
            let ret = sys::nlopt_get_lower_bounds(self.nloptc_obj, b as *mut f64);
            match ret {
                x if x < 0 => None,
                _ => Some(slice::from_raw_parts(b as *mut f64, self.n_dims)),
            }
        }
    }

    /// Several of the algorithms in NLopt (MMA, COBYLA, and ORIG_DIRECT) also support arbitrary
    /// nonlinear inequality constraints, and some additionally allow nonlinear equality constraints
    /// (ISRES and AUGLAG). For these algorithms, you can specify as many nonlinear constraints as
    /// you wish.
    ///
    /// In particular, a nonlinear constraint of the form `fc(x) = 0`, where the function
    /// fc is has the same form as an objective function, can be specified by calling this function.
    ///
    /// * `tolerance` - This parameter is a tolerance
    /// that is used for the purpose of stopping criteria only: a point `x` is considered feasible for
    /// judging whether to stop the optimization if `fc(x) ≤ tol`. A tolerance of zero means that
    /// NLopt will try not to consider any `x` to be converged unless the constraint is strictly
    /// satisfied;
    /// generally, at least a small positive tolerance is advisable to reduce sensitivity to
    /// rounding errors.
    pub fn add_equality_constraint<G, U>(
        &mut self,
        constraint: G,
        user_data: U,
        tolerance: f64,
    ) -> OptResult
    where
        G: Fn(&[f64], Option<&mut [f64]>, &mut U) -> f64,
    {
        self.add_constraint(constraint, user_data, tolerance, true)
    }

    /// Set a nonlinear constraint of the form `fc(x) ≤ 0`.
    /// For more information see the documentation for `add_equality_constraint`.
    pub fn add_inequality_constraint<G, U>(
        &mut self,
        constraint: G,
        user_data: U,
        tolerance: f64,
    ) -> OptResult
    where
        G: Fn(&[f64], Option<&mut [f64]>, &mut U) -> f64,
    {
        self.add_constraint(constraint, user_data, tolerance, false)
    }

    fn add_constraint<G, U>(
        &mut self,
        constraint: G,
        user_data: U,
        tolerance: f64,
        is_equality: bool,
    ) -> OptResult
    where
        G: Fn(&[f64], Option<&mut [f64]>, &mut U) -> f64,
    {
        let constraint = ConstraintCfg {
            objective_fn: constraint,
            user_data,
        };
        let ptr = Box::into_raw(Box::new(constraint)) as *mut c_void;
        let outcome = unsafe {
            if is_equality {
                sys::nlopt_add_equality_constraint(
                    self.nloptc_obj,
                    Some(constraint_raw_callback::<G, U>),
                    ptr,
                    tolerance,
                )
            } else {
                sys::nlopt_add_inequality_constraint(
                    self.nloptc_obj,
                    Some(constraint_raw_callback::<G, U>),
                    ptr,
                    tolerance,
                )
            }
        };
        result_from_outcome(outcome)
    }

    /// In some applications with multiple constraints, it is more convenient to define a single
    /// function that returns the values (and gradients) of all constraints at once. For example,
    /// different constraint functions might share computations in some way. Or, if you have a large
    /// number of constraints, you may wish to compute them in parallel. This possibility is
    /// supported by this function, which defines multiple equality constraints at once, or
    /// equivalently a vector-valued constraint function `fc(x) | R^n --> R^m`:
    ///
    /// * `constraint` - A constraint function bundled with user defined parameters.
    /// * `tolerance` - An array slice of length `m` of the tolerances in each constraint dimension
    pub fn add_equality_mconstraint<G, U>(
        &mut self,
        m: usize,
        constraint: G,
        user_data: U,
        tolerance: f64,
    ) -> OptResult
    where
        G: Fn(&mut [f64], &[f64], Option<&mut [f64]>, &mut U),
    {
        self.add_mconstraint(m, constraint, user_data, tolerance, true)
    }

    /// Set a nonlinear multivalue inequality constraint.
    /// For more information see the documentation for `add_equality_mconstraint`.
    pub fn add_inequality_mconstraint<G, U>(
        &mut self,
        m: usize,
        constraint: G,
        user_data: U,
        tolerance: f64,
    ) -> OptResult
    where
        G: Fn(&mut [f64], &[f64], Option<&mut [f64]>, &mut U),
    {
        self.add_mconstraint(m, constraint, user_data, tolerance, false)
    }

    fn add_mconstraint<G, U>(
        &mut self,
        m: usize,
        constraint: G,
        user_data: U,
        tolerance: f64,
        is_equality: bool,
    ) -> OptResult
    where
        G: Fn(&mut [f64], &[f64], Option<&mut [f64]>, &mut U),
    {
        let mconstraint = MConstraintCfg {
            constraint,
            user_data,
        };
        let ptr = Box::into_raw(Box::new(mconstraint)) as *mut c_void;
        let outcome = unsafe {
            if is_equality {
                sys::nlopt_add_equality_mconstraint(
                    self.nloptc_obj,
                    m as c_uint,
                    Some(mfunction_raw_callback::<G, U>),
                    ptr,
                    &tolerance,
                )
            } else {
                sys::nlopt_add_inequality_mconstraint(
                    self.nloptc_obj,
                    m as c_uint,
                    Some(mfunction_raw_callback::<G, U>),
                    ptr,
                    &tolerance,
                )
            }
        };
        result_from_outcome(outcome)
    }

    // TODO untested
    /// Remove all of the inequality and equality constraints from a given problem.
    pub fn remove_constraints(&mut self) -> OptResult {
        result_from_outcome(unsafe {
            std::cmp::min(
                sys::nlopt_remove_inequality_constraints(self.nloptc_obj),
                sys::nlopt_remove_equality_constraints(self.nloptc_obj),
            )
        })
    }

    /// Multiple stopping criteria for the optimization are supported,
    /// as specified by the functions to modify a given optimization problem. The optimization
    /// halts whenever any one of these criteria is satisfied. In some cases, the precise
    /// interpretation of the stopping criterion depends on the optimization algorithm above
    /// (although we have tried to make them as consistent as reasonably possible), and some
    /// algorithms do not support all of the stopping criteria.
    ///
    /// Note: you do not need to use all of the stopping criteria! In most cases, you only need one
    /// or two, and can omit the remainder (all criteria are disabled by default).
    ///
    /// This functions specifies a stop when an objective value of at least `stopval` is found: stop minimizing when an objective
    /// `value ≤ stopval` is found, or stop maximizing a `value ≥ stopval` is found.
    pub fn set_stopval(&mut self, stopval: f64) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_stopval(self.nloptc_obj, stopval) })
    }

    pub fn get_stopval(&self) -> f64 {
        unsafe { sys::nlopt_get_stopval(self.nloptc_obj) }
    }

    /// Set relative tolerance on function value: stop when an optimization step (or an estimate of
    /// the optimum) changes the objective function value by less than `tolerance` multiplied by the
    /// absolute value of the function value. (If there is any chance that your optimum function
    /// value is close to zero, you might want to set an absolute tolerance with `set_ftol_abs`
    /// as well.) Criterion is disabled if `tolerance` is non-positive.
    pub fn set_ftol_rel(&mut self, tolerance: f64) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_ftol_rel(self.nloptc_obj, tolerance) })
    }

    pub fn get_ftol_rel(&self) -> Option<f64> {
        unsafe {
            match sys::nlopt_get_ftol_rel(self.nloptc_obj) {
                x if x < 0.0 => None,
                x => Some(x),
            }
        }
    }

    /// Set absolute tolerance on function value: stop when an optimization step (or an estimate of
    /// the optimum) changes the function value by less than `tolerance`.
    /// Criterion is disabled if `tolerance` is
    /// non-positive.
    pub fn set_ftol_abs(&mut self, tolerance: f64) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_ftol_abs(self.nloptc_obj, tolerance) })
    }

    pub fn get_ftol_abs(&self) -> Option<f64> {
        match unsafe { sys::nlopt_get_ftol_abs(self.nloptc_obj) } {
            x if x < 0.0 => None,
            x => Some(x),
        }
    }

    /// Set relative tolerance on optimization parameters: stop when an optimization step (or an
    /// estimate of the optimum) changes every parameter by less than `tolerance`
    /// multiplied by the absolute
    /// value of the parameter. (If there is any chance that an optimal parameter is close to zero,
    /// you might want to set an absolute tolerance with `set_xtol_abs` as well.) Criterion is
    /// disabled if `tolerance` is non-positive.
    pub fn set_xtol_rel(&mut self, tolerance: f64) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_xtol_rel(self.nloptc_obj, tolerance) })
    }

    pub fn get_xtol_rel(&self) -> Option<f64> {
        match unsafe { sys::nlopt_get_xtol_rel(self.nloptc_obj) } {
            x if x < 0.0 => None,
            x => Some(x),
        }
    }

    /// Set absolute tolerances on optimization parameters. `tolerance` is a an array slice of length `n`
    /// giving the tolerances: stop when an optimization step (or
    /// an estimate of the optimum) changes every parameter `x[i]` by less than `tolerance[i]`.
    pub fn set_xtol_abs(&mut self, tolerance: &[f64]) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_xtol_abs(self.nloptc_obj, tolerance.as_ptr()) })
    }

    /// For convenience, this function may be used to set the absolute tolerances in all `n`
    /// optimization parameters to the same value.
    pub fn set_xtol_abs1(&mut self, tolerance: f64) -> OptResult {
        let tol: &[f64] = &vec![tolerance; self.n_dims];
        self.set_xtol_abs(tol)
    }

    pub fn get_xtol_abs(&mut self) -> Option<&[f64]> {
        let mut tol: Vec<f64> = vec![0.0 as f64; self.n_dims];
        let b = tol.as_mut_ptr();
        let ret = unsafe { sys::nlopt_get_xtol_abs(self.nloptc_obj, b as *mut f64) };
        match ret {
            x if x < 0 => None,
            _ => Some(unsafe { slice::from_raw_parts(b as *mut f64, self.n_dims) }),
        }
    }

    /// Stop when the number of function evaluations exceeds `maxeval`. (This is not a strict maximum:
    /// the number of function evaluations may exceed `maxeval` slightly, depending upon the
    /// algorithm.) Criterion is disabled if `maxeval` is non-positive.
    pub fn set_maxeval(&mut self, maxeval: u32) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_maxeval(self.nloptc_obj, maxeval as i32) })
    }

    pub fn get_maxeval(&mut self) -> Option<u32> {
        match unsafe { sys::nlopt_get_maxeval(self.nloptc_obj) } {
            x if x < 0 => None,
            x => Some(x as u32),
        }
    }

    /// Stop when the optimization time (in seconds) exceeds `maxtime`. (This is not a strict maximum:
    /// the time may exceed `maxtime` slightly, depending upon the algorithm and on how slow your
    /// function evaluation is.) Criterion is disabled if `maxtime` is non-positive.
    pub fn set_maxtime(&mut self, timeout: f64) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_maxtime(self.nloptc_obj, timeout) })
    }

    pub fn get_maxtime(&self) -> Option<f64> {
        match unsafe { sys::nlopt_get_maxtime(self.nloptc_obj) } {
            x if x < 0.0 => None,
            x => Some(x),
        }
    }

    /// In certain cases, the caller may wish to force the optimization to halt, for some reason
    /// unknown to NLopt. For example, if the user presses Ctrl-C, or there is an error of some
    /// sort in the objective function. In this case, it is possible to tell NLopt to halt
    /// the optimization gracefully, returning the best point found so far, by calling this
    /// function from within your objective or constraint functions. This causes nlopt_optimize to
    /// halt, returning the NLOPT_FORCED_STOP error code. It has no effect if not called
    /// during nlopt_optimize.
    ///
    /// # Params
    /// stopval: If you want to provide a bit more information, set a forced-stop integer value
    /// ```val```, which can be later retrieved by calling: ```get_force_stop()```, which returns  the
    /// last force-stop value that was set since the last nlopt_optimize. The force-stop value is
    /// ```None``` at the beginning of nlopt_optimize. Passing ```stopval=0``` to
    /// ```force_stop()``` tells NLopt not to force a halt.
    pub fn force_stop(&mut self, stopval: Option<i32>) -> OptResult {
        result_from_outcome(unsafe {
            match stopval {
                Some(x) => sys::nlopt_set_force_stop(self.nloptc_obj, x),
                None => sys::nlopt_force_stop(self.nloptc_obj),
            }
        })
    }

    pub fn get_force_stop(&mut self) -> Option<i32> {
        match unsafe { sys::nlopt_get_force_stop(self.nloptc_obj) } {
            0 => None,
            x => Some(x),
        }
    }

    /// Some of the algorithms, especially MLSL and AUGLAG, use a different optimization algorithm
    /// as a subroutine, typically for local optimization. You can change the local search algorithm
    /// and its tolerances using this function.
    ///
    /// Here, local_opt is another `Nlopt<T>` whose parameters are used to determine the local
    /// search algorithm, its stopping criteria, and other algorithm parameters. (However, the
    /// objective function, bounds, and nonlinear-constraint parameters of `local_opt` are ignored.)
    /// The dimension `n` of `local_opt` must match that of the main optimization.
    ///
    /// A stubbed version of `local_opt` can be obtained with `get_local_optimizer`.
    pub fn set_local_optimizer(&mut self, local_opt: Nlopt<ObjFn<()>, ()>) -> OptResult {
        result_from_outcome(unsafe {
            sys::nlopt_set_local_optimizer(self.nloptc_obj, local_opt.nloptc_obj)
        })
    }

    pub fn get_local_optimizer(&mut self, algorithm: Algorithm) -> Nlopt<ObjFn<()>, ()> {
        fn stub_opt(_: &[f64], _: Option<&mut [f64]>, _: &mut ()) -> f64 {
            unreachable!()
        }
        // create a new object based on former one
        Nlopt::new(
            algorithm,
            self.n_dims,
            stub_opt as ObjFn<()>,
            self.target,
            (),
        )
    }

    /// For derivative-free local-optimization algorithms, the optimizer must somehow decide on some
    /// initial step size to perturb x by when it begins the optimization. This step size should be
    /// big enough that the value of the objective changes significantly, but not too big if you
    /// want to find the local optimum nearest to x. By default, NLopt chooses this initial step
    /// size heuristically from the bounds, tolerances, and other information, but this may not
    /// always be the best choice. You can use this function to modify the initial step size.
    ///
    /// Here, `dx` is an array of length `n` containing
    /// the (nonzero) initial step size for each component of the optimization parameters `x`. For
    /// convenience, if you want to set the step sizes in every direction to be the same value, you
    /// can instead call `set_initial_step1`.
    pub fn set_initial_step(&mut self, dx: &[f64]) -> OptResult {
        result_from_outcome(unsafe { sys::nlopt_set_initial_step(self.nloptc_obj, dx.as_ptr()) })
    }

    pub fn set_initial_step1(&mut self, dx: f64) -> OptResult {
        let d: &[f64] = &vec![dx; self.n_dims];
        self.set_initial_step(d)
    }

    /// Here, `x` is the same as the initial guess that you plan to pass to `optimize` – if you
    /// have not set the initial step and NLopt is using its heuristics, its heuristic step size may
    /// depend on the initial `x`, which is why you must pass it here. Both `x`
    /// and the return value are arrays of
    /// length `n`.
    pub fn get_initial_step(&mut self, x: &[f64]) -> Option<&[f64]> {
        let mut dx: Vec<f64> = vec![0.0 as f64; self.n_dims];
        unsafe {
            let b = dx.as_mut_ptr();
            let ret = sys::nlopt_get_initial_step(self.nloptc_obj, x.as_ptr(), b as *mut f64);
            match ret {
                x if x < 0 => None,
                _ => Some(slice::from_raw_parts(b as *mut f64, self.n_dims)),
            }
        }
    }

    // Stochastic Population
    /// Several of the stochastic search algorithms (e.g., CRS, MLSL, and ISRES) start by generating
    /// some initial "population" of random points `x.` By default, this initial population size is
    /// chosen heuristically in some algorithm-specific way, but the initial population can by
    /// changed by calling this function. A `population` of zero implies
    /// that the heuristic default will be used.
    pub fn set_population(&mut self, population: usize) -> OptResult {
        result_from_outcome(unsafe {
            sys::nlopt_set_population(self.nloptc_obj, population as u32)
        })
    }

    pub fn get_population(&mut self) -> usize {
        unsafe { sys::nlopt_get_population(self.nloptc_obj) as usize }
    }

    // Pseudorandom Numbers
    /// For stochastic optimization algorithms, we use pseudorandom numbers generated by the
    /// Mersenne Twister algorithm, based on code from Makoto Matsumoto. By default, the seed for
    /// the random numbers is generated from the system time, so that you will get a different
    /// sequence of pseudorandom numbers each time you run your program. If you want to use a
    /// "deterministic" sequence of pseudorandom numbers, i.e. the same sequence from run to run,
    /// you can set the seed with this function. To reset the seed based on the system time, you can
    /// call this function with `seed = None`.
    pub fn srand_seed(seed: Option<u64>) {
        unsafe {
            match seed {
                None => sys::nlopt_srand_time(),
                Some(x) => sys::nlopt_srand(x as c_ulong),
            }
        }
    }

    // Vector storage for limited-memory quasi-Newton algorithms
    /// Some of the NLopt algorithms are limited-memory "quasi-Newton" algorithms, which "remember"
    /// the gradients from a finite number M of the previous optimization steps in order to
    /// construct an approximate 2nd derivative matrix. The bigger M is, the more storage the
    /// algorithms require, but on the other hand they may converge faster for larger M. By default,
    /// NLopt chooses a heuristic value of M, but this can be changed by calling this function.
    /// Passing M=0 (the default) tells NLopt to use a heuristic value. By default, NLopt currently
    /// sets M to 10 or at most 10 MiB worth of vectors, whichever is larger.
    pub fn set_vector_storage(&mut self, m: Option<usize>) -> OptResult {
        let outcome = match m {
            None => unsafe { sys::nlopt_set_vector_storage(self.nloptc_obj, 0 as u32) },
            Some(x) => unsafe { sys::nlopt_set_vector_storage(self.nloptc_obj, x as u32) },
        };
        result_from_outcome(outcome)
    }

    pub fn get_vector_storage(&mut self) -> usize {
        unsafe { sys::nlopt_get_vector_storage(self.nloptc_obj) as usize }
    }

    // Preconditioning TODO --> this is somewhat complex but not overly so.
    // Just did not get around to it yet.

    /// To determine the version number of NLopt at runtime, you can call this function. For
    /// example, NLopt version 3.1.4 would return `(3, 1, 4)`.
    pub fn version() -> (i32, i32, i32) {
        unsafe {
            let mut i: i32 = 0;
            let mut j: i32 = 0;
            let mut k: i32 = 0;
            sys::nlopt_version(&mut i, &mut j, &mut k);
            (i, j, k)
        }
    }

    /// Once all of the desired optimization parameters have been specified in a given
    /// `NLoptOptimzer`, you can perform the optimization by calling this function. On input,
    /// `x_init` is an array of length `n` giving an initial
    /// guess for the optimization parameters. On successful return, `x_init`
    /// contains the optimized values
    /// of the parameters, and the function returns the corresponding value of the objective function.
    pub fn optimize(&self, x_init: &mut [f64]) -> Result<(SuccessState, f64), (FailState, f64)> {
        let mut min_value: f64 = 0.0;
        let res =
            unsafe { sys::nlopt_optimize(self.nloptc_obj, x_init.as_mut_ptr(), &mut min_value) };
        result_from_outcome(res)
            .map(|s| (s, min_value))
            .map_err(|e| (e, min_value))
    }
}

impl<F, T> Drop for Nlopt<F, T>
where
    F: Fn(&[f64], Option<&mut [f64]>, &mut T) -> f64,
{
    fn drop(&mut self) {
        // TODO should also drop the Function obj else it leaks
        unsafe {
            sys::nlopt_destroy(self.nloptc_obj);
        };
    }
}

/// Helper function to calculate gradient of function numerically.
/// Can be useful when a gradient must be provided to the optimization
/// algorithm and a closed-form derivative cannot be obtained
pub fn approximate_gradient(x0: &[f64], f: fn(&[f64]) -> f64, grad: &mut [f64]) {
    let n = x0.len();
    let mut x0 = x0.to_vec();
    let eps = std::f64::EPSILON.powf(1.0 / 3.0);
    for i in 0..n {
        let x0i = x0[i];
        x0[i] = x0i - eps;
        let fl = f(&x0);
        x0[i] = x0i + eps;
        let fh = f(&x0);
        grad[i] = (fh - fl) / (2.0 * eps);
        x0[i] = x0i;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_approx_gradient() {
        fn square(x: &[f64]) -> f64 {
            x.iter().map(|v| v * v).sum()
        }

        let x0 = vec![0., 1., 6.];
        let mut grad = vec![0.; 3];
        approximate_gradient(&x0, square, &mut grad);
        let expect = vec![0., 2., 12.];
        for (r, e) in grad.iter().zip(expect.iter()) {
            assert!((r - e).abs() < 0.0000001)
        }
    }

    #[test]
    fn test_lbfgs() {
        // Taken from `nloptr` docs
        fn flb(x: &[f64]) -> f64 {
            let p = x.len();
            Some(1.0)
                .into_iter()
                .chain(std::iter::repeat(4.0))
                .take(p)
                .zip(
                    x.iter()
                        .zip(Some(1.0).into_iter().chain(x.iter().cloned()).take(p))
                        .map(|(x, xd)| (x - xd.powi(2)).powi(2)),
                )
                .map(|(fst, snd)| fst * snd)
                .sum()
        }

        fn objfn(x: &[f64], grad: Option<&mut [f64]>, _user_data: &mut ()) -> f64 {
            let grad = grad.unwrap();
            approximate_gradient(x, flb, grad);
            flb(x)
        }

        let mut opt = Nlopt::<_, ()>::new(Algorithm::Lbfgs, 25, objfn, Target::Minimize, ());

        let mut x0 = vec![3.0; 25];
        let xl = vec![2.0; 25];
        let xu = vec![4.0; 25];

        opt.set_upper_bounds(&xu).unwrap();
        opt.set_lower_bounds(&xl).unwrap();
        opt.set_lower_bounds(&xl).unwrap();
        opt.set_xtol_rel(1e-8).unwrap();

        let mut expect = vec![2.0; 25];
        expect[23] = 2.1090933511928247;
        expect[24] = 4.;

        match opt.optimize(&mut x0) {
            Ok((_, v)) => assert_eq!(v, 368.10591287433397),
            Err((e, _)) => panic!(e),
        }
        assert_eq!(&x0, &expect);
    }

    #[test]
    fn test_praxis_closure() {
        fn objfn(x: &[f64]) -> f64 {
            // max = 4 at x0 = 1, x1 = 0
            ((x[0] - 1.) * (x[0] - 1.) + x[1] * x[1]) * -1. + 4.
        }

        let opt = Nlopt::new(
            Algorithm::Praxis,
            2,
            |x, _, ()| objfn(x),
            Target::Maximize,
            (),
        );
        let mut input = vec![3.0, -2.0];
        let (_s, val) = opt.optimize(&mut input).unwrap();
        assert_eq!(val, 4.);
        assert_eq!(input, &[1., 0.]);
    }

    #[test]
    fn test_auglag() {
        // Test adapted from nloptr docs

        fn objfn(x: &[f64], _grad: Option<&mut [f64]>, _user_data: &mut ()) -> f64 {
            (x[0] - 2.0).powi(2) + (x[1] - 1.0).powi(2)
        }

        fn hin(x: &[f64], _grad: Option<&mut [f64]>, _user_data: &mut ()) -> f64 {
            0.25 * x[0].powi(2) + x[1].powi(2) - 1.
        }

        fn heq(x: &[f64], _grad: Option<&mut [f64]>, _user_data: &mut ()) -> f64 {
            x[0] - 2.0 * x[1] + 1.
        }

        let mut opt = Nlopt::new(Algorithm::Auglag, 2, objfn, Target::Minimize, ());
        opt.add_inequality_constraint(hin, (), 1e-6).unwrap();
        opt.add_equality_constraint(heq, (), 1e-6).unwrap();
        opt.set_xtol_rel(1e-6).unwrap();

        let mut local_opt = opt.get_local_optimizer(Algorithm::Cobyla);
        local_opt.set_xtol_rel(1e-6).unwrap();
        opt.set_local_optimizer(local_opt).unwrap();

        let mut input = vec![1., 1.];
        let (_s, v) = opt.optimize(&mut input).unwrap();
        assert_eq!(v, 1.3934640682303436);
        assert_eq!(&input, &[0.8228760595426139, 0.9114376093794901]);
    }

    #[test]
    fn test_auglag_mconstraint() {
        fn objfn(x: &[f64], _grad: Option<&mut [f64]>, _user_data: &mut ()) -> f64 {
            (x[0] - 2.0).powi(2) + (x[1] - 1.0).powi(2)
        }

        fn hin(x: &[f64]) -> f64 {
            0.25 * x[0].powi(2) + x[1].powi(2) - 1.
        }

        fn heq(x: &[f64]) -> f64 {
            x[0] - 2.0 * x[1] + 1.
        }

        fn m_ineq_constraint(result: &mut [f64], x: &[f64]) {
            result[0] = hin(x);
            // shouldn't affect the optimization, will always be < hin1
            result[1] = hin(x) - 1.0;
            result[2] = hin(x) - 2.0;
        }

        fn m_eq_constraint(result: &mut [f64], x: &[f64]) {
            result[0] = heq(x);
        }

        let mut opt = Nlopt::new(Algorithm::Auglag, 2, objfn, Target::Minimize, ());

        opt.add_inequality_mconstraint(
            3,
            |r, x, _, ()| m_ineq_constraint(r, x),
            (),
            1e-6).unwrap();

        // TODO if we use two eq constraints, it doesn't converge *shrug*
        opt.add_equality_mconstraint(
            1,
            |r, x, _, ()| m_eq_constraint(r, x),
            (),
            1e-6).unwrap();

        opt.set_xtol_rel(1e-6).unwrap();

        let mut local_opt = opt.get_local_optimizer(Algorithm::Bobyqa);
        local_opt.set_xtol_rel(1e-6).unwrap();
        opt.set_local_optimizer(local_opt).unwrap();

        let mut input = vec![1., 1.];
        let (_s, v) = opt.optimize(&mut input).unwrap();
        assert_eq!(v, 1.3934648637383988);  // don't really know if this is the right answer...
    }
}