1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
use std::fmt;

extern crate nalgebra;

use crate::iteratives;
use crate::iteratives::Iterative;
use crate::model;
use crate::residuals;

use super::greenstadt_second_method_udpate_jac;
use super::{broyden_first_method_udpate_inv_jac, broyden_second_method_udpate_inv_jac};
use super::{broyden_first_method_udpate_jac, broyden_second_method_udpate_jac};
use super::{jacobian_evaluation, JacobianMatrix, SolverParameters};
use super::{quasi_method_update_inv_jac, quasi_method_update_jac};
use super::{QuasiNewtonMethod, ResolutionMethod, UpdateQuasiNewtonMethod};

/// Solver for rootfinding
///
/// The solver operates on the model and mutate it
///
/// The core functionnality is the `solve()` method
///
/// The user can activate the debugging before the resolution thanks to the `set_debug()` method
pub struct RootFinder<'a, T, D>
where
    T: Iterative + fmt::Display,
    D: nalgebra::DimMin<D, Output = D>,
    nalgebra::DefaultAllocator: nalgebra::base::allocator::Allocator<f64, D>,
    nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<f64, nalgebra::U1, D>,
    nalgebra::DefaultAllocator: nalgebra::base::allocator::Allocator<f64, D, D>,
    nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<(usize, usize), D>,
{
    // user inputs
    parameters: SolverParameters,
    initial_guess: nalgebra::OVector<f64, D>,
    iters_params: &'a iteratives::Iteratives<'a, T>,
    residuals_config: &'a residuals::ResidualsConfig<'a>,
    debug: bool,

    // solver placeholder
    iter: usize,
    solver_log: Option<super::log::SolverLog>,
    jacobian: JacobianMatrix<D>,
    compute_jac_next_iter: bool,
    last_iter_with_computed_jacobian: usize,
    iteratives_step_size: Option<nalgebra::OVector<f64, D>>,
    residuals_step_size: Option<nalgebra::OVector<f64, D>>,
    residuals_values_current: Option<nalgebra::OVector<f64, D>>,
}

impl<'a, T, D> RootFinder<'a, T, D>
where
    T: Iterative + fmt::Display,
    D: nalgebra::DimMin<D, Output = D>,
    nalgebra::DefaultAllocator: nalgebra::base::allocator::Allocator<f64, D>,
    nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<f64, nalgebra::U1, D>,
    nalgebra::DefaultAllocator: nalgebra::base::allocator::Allocator<f64, D, D>,
    nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<(usize, usize), D>,
{
    pub fn new(
        parameters: SolverParameters,
        initial_guess: nalgebra::OVector<f64, D>,
        iters_params: &'a iteratives::Iteratives<'a, T>,
        residuals_config: &'a residuals::ResidualsConfig<'a>,
    ) -> Self {
        let debug = false;
        let solver_log = None;
        let iter = 0;

        if residuals_config.len() != parameters.get_problem_size() {
            panic!(
                "Dimension mismatch :\n residuals_config.len() = {} and problem_size = {}",
                residuals_config.len(),
                parameters.get_problem_size()
            );
        }
        if initial_guess.len() != parameters.get_problem_size() {
            panic!(
                "Dimension mismatch :\n initial_guess.len() = {} and problem_size = {}",
                initial_guess.len(),
                parameters.get_problem_size()
            );
        }
        if iters_params.len() != parameters.get_problem_size() {
            panic!(
                "Dimension mismatch :\n iters_params.len() = {} and problem_size = {}",
                iters_params.len(),
                parameters.get_problem_size()
            );
        }

        let jacobian = JacobianMatrix::new();
        let compute_jac_next_iter = true;
        let last_iter_with_computed_jacobian = 0;
        let iteratives_step_size = None;
        let residuals_step_size = None;
        let residuals_values_current = None;

        RootFinder {
            parameters,
            initial_guess,
            iters_params,
            residuals_config,
            debug,
            iter,
            solver_log,
            jacobian,
            compute_jac_next_iter,
            last_iter_with_computed_jacobian,
            iteratives_step_size,
            residuals_step_size,
            residuals_values_current,
        }
    }

    /// Activate the gathering of the log
    ///
    /// The path must be provided (as .txt file)
    /// This generate a .txt file at the given path with simulation informations.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// extern crate newton_rootfinder;
    /// use newton_rootfinder as nrf;
    /// # use nrf::iteratives;
    /// # use nrf::residuals;
    /// # use nrf::solver::ResolutionMethod;
    /// # pub fn square2(x: &nalgebra::DVector<f64>) -> nalgebra::DVector<f64> {
    /// #   let mut y = x * x;
    /// #   y[0] -= 2.0;
    /// #   y
    /// # }
    /// # let problem_size = 1;
    /// # let init_guess = nalgebra::DVector::from_vec(vec![1.0]);
    /// # let vec_iter_params = iteratives::default_vec_iteratives_fd(problem_size);
    /// # let iter_params = iteratives::Iteratives::new(&vec_iter_params);
    /// # let stopping_residuals = vec![residuals::NormalizationMethod::Abs; problem_size];
    /// # let update_methods = vec![residuals::NormalizationMethod::Abs; problem_size];
    /// # let res_config = residuals::ResidualsConfig::new(&stopping_residuals, &update_methods);
    /// # let mut user_model = nrf::model::UserModelFromFunction::new(problem_size, square2);
    /// # let damping = false;
    /// let mut rf = nrf::solver::default_with_guess(init_guess, &iter_params, &res_config, ResolutionMethod::NewtonRaphson, damping);
    ///
    /// rf.activate_debug(&"solver_log.txt");
    /// rf.solve(&mut user_model);
    /// ```
    pub fn activate_debug(&mut self, path: &str) {
        self.debug = true;
        self.solver_log = Some(super::log::SolverLog::new(path));
    }

    fn evaluate_errors<M>(&self, model: &M) -> nalgebra::OVector<f64, D>
    where
        M: model::Model<D>,
    {
        let residuals_values = model.get_residuals();
        self.residuals_config
            .evaluate_stopping_residuals(&residuals_values)
    }

    fn compute_jac_func<M>(&mut self, model: &mut M)
    where
        M: model::Model<D>,
    {
        let residuals_values = model.get_residuals();

        let jacobians = model.get_jacobian();
        let normalization_method = self.residuals_config.get_update_methods();
        self.jacobian
            .update_jacobian(jacobians.normalize(&residuals_values, &normalization_method));
    }

    fn compute_jac_fd<M>(&mut self, model: &mut M)
    where
        M: model::Model<D>,
    {
        let iters_values = model.get_iteratives();

        let perturbations = self.iters_params.compute_perturbations(&iters_values);

        self.jacobian.update_jacobian(jacobian_evaluation(
            model,
            &perturbations,
            &(self.residuals_config),
        ));
    }

    fn compute_jac<M>(&mut self, model: &mut M)
    where
        M: model::Model<D>,
    {
        if model.jacobian_provided() {
            self.compute_jac_func(model);
        } else {
            self.compute_jac_fd(model);
        }

        self.compute_jac_next_iter = false;
        self.last_iter_with_computed_jacobian = self.iter;
    }

    fn compute_newton_raphson_step<M>(&mut self, model: &mut M) -> nalgebra::OVector<f64, D>
    where
        M: model::Model<D>,
    {
        self.compute_jac(model);

        if self.debug {
            self.jac_to_log();
        }

        self.compute_next_from_inv_jac(model)
    }

    fn approximate_jacobian(&mut self, method: UpdateQuasiNewtonMethod) {
        let jac_next = match method {
            UpdateQuasiNewtonMethod::BroydenFirstMethod => broyden_first_method_udpate_jac(
                self.jacobian.get_jacobian().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::BroydenSecondMethod => broyden_second_method_udpate_jac(
                self.jacobian.get_jacobian().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::GreenstadtFirstMethod => quasi_method_update_jac(
                self.jacobian.get_jacobian().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
                self.residuals_values_current.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::GreenstadtSecondMethod => {
                let c = self.jacobian.get_inverse().as_ref().unwrap()
                    * self.residuals_step_size.as_ref().unwrap();
                greenstadt_second_method_udpate_jac(
                    self.jacobian.get_jacobian().as_ref().unwrap(),
                    self.iteratives_step_size.as_ref().unwrap(),
                    self.residuals_step_size.as_ref().unwrap(),
                    &c,
                )
            }
        };

        self.jacobian.update_jacobian(jac_next);
    }

    fn approximate_inv_jacobian(&mut self, method: UpdateQuasiNewtonMethod) {
        let inv_jac_next = match method {
            UpdateQuasiNewtonMethod::BroydenFirstMethod => broyden_first_method_udpate_inv_jac(
                self.jacobian.get_inverse().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::BroydenSecondMethod => broyden_second_method_udpate_inv_jac(
                self.jacobian.get_inverse().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::GreenstadtFirstMethod => quasi_method_update_inv_jac(
                self.jacobian.get_inverse().as_ref().unwrap(),
                self.iteratives_step_size.as_ref().unwrap(),
                self.residuals_step_size.as_ref().unwrap(),
                self.residuals_values_current.as_ref().unwrap(),
            ),
            UpdateQuasiNewtonMethod::GreenstadtSecondMethod => {
                let c = self.jacobian.get_inverse().as_ref().unwrap().transpose()
                    * self.jacobian.get_inverse().as_ref().unwrap()
                    * self.residuals_step_size.as_ref().unwrap();
                quasi_method_update_inv_jac(
                    self.jacobian.get_inverse().as_ref().unwrap(),
                    self.iteratives_step_size.as_ref().unwrap(),
                    self.residuals_step_size.as_ref().unwrap(),
                    &c,
                )
            }
        };

        self.jacobian.update_inverse(inv_jac_next);
    }

    fn compute_quasi_newton_step<M>(
        &mut self,
        model: &mut M,
        resolution_method: QuasiNewtonMethod,
    ) -> nalgebra::OVector<f64, D>
    where
        M: model::Model<D>,
    {
        if self.compute_jac_next_iter {
            self.compute_jac(model);
        } else {
            match resolution_method {
                QuasiNewtonMethod::StationaryNewton => (),
                QuasiNewtonMethod::JacobianUpdate(method) => {
                    self.approximate_jacobian(method);
                }
                QuasiNewtonMethod::InverseJacobianUpdate(method) => {
                    self.approximate_inv_jacobian(method);
                }
            };
        }

        if self.debug {
            self.jac_to_log();
        }

        self.compute_next_from_inv_jac(model)
    }

    fn compute_next_from_inv_jac<M>(&self, model: &M) -> nalgebra::OVector<f64, D>
    where
        M: model::Model<D>,
    {
        let residuals = self
            .residuals_config
            .evaluate_update_residuals(&model.get_residuals());

        let raw_step = -self.jacobian.get_inverse().as_ref().unwrap() * residuals;

        let iter_values = model.get_iteratives();

        self.iters_params.step_limitations(&iter_values, &raw_step)
    }

    fn damping<M>(
        &mut self,
        model: &mut M,
        max_error: f64,
        current_guess: &nalgebra::OVector<f64, D>,
        proposed_guess: &nalgebra::OVector<f64, D>,
        errors_next: &mut nalgebra::OVector<f64, D>,
    ) where
        M: model::Model<D>,
    {
        let max_error_next = errors_next.amax();
        if max_error_next > max_error {
            // see documentation of the `SolverParameters` struct
            if self.parameters.get_resolution_method() != ResolutionMethod::NewtonRaphson
                && self.last_iter_with_computed_jacobian != self.iter
            {
                self.compute_jac_next_iter = true;
                if self.debug {
                    self.recompute_jacobian_to_log();
                }
            } else {
                let damping_factor = 1.0 / 2.0;
                let damped_guess =
                    current_guess * (1.0 - damping_factor) + proposed_guess * damping_factor;
                model.set_iteratives(&damped_guess);
                model.evaluate();
                *errors_next = self.evaluate_errors(model);

                if self.debug {
                    self.damping_to_log(model, &errors_next);
                }
            }
        }
    }

    fn update_model<M>(
        &mut self,
        model: &mut M,
        proposed_guess: &nalgebra::OVector<f64, D>,
    ) -> nalgebra::OVector<f64, D>
    where
        M: model::Model<D>,
    {
        let errors = self.evaluate_errors(model);
        let max_error = errors.amax();
        let current_guess = model.get_iteratives();

        model.set_iteratives(proposed_guess);
        model.evaluate();
        let mut errors_next = self.evaluate_errors(model);

        if self.debug {
            self.iteration_to_log(model, &errors_next);
        }

        if self.parameters.get_damping() {
            self.damping(
                model,
                max_error,
                &current_guess,
                &proposed_guess,
                &mut errors_next,
            );
        }

        match self.parameters.get_resolution_method() {
            ResolutionMethod::NewtonRaphson => (),
            ResolutionMethod::QuasiNewton(QuasiNewtonMethod::StationaryNewton) => (),
            _ => {
                self.iteratives_step_size = Some(model.get_iteratives() - current_guess);
                self.residuals_step_size = Some(errors_next.clone() - errors);
                self.residuals_values_current = Some(errors_next.clone())
            }
        };

        errors_next
    }

    /// The core function performing the resolution on a given `Model`
    pub fn solve<M>(&mut self, model: &mut M)
    where
        M: model::Model<D>,
    {
        model.set_iteratives(&self.initial_guess);
        model.evaluate();

        let mut errors = self.evaluate_errors(model);
        let mut max_error = errors.amax();

        if self.debug {
            self.parameters_to_log();
            self.iteration_to_log(model, &errors);
        }

        // Warning: unrolling by hand the first iteration as the following code does
        //          is actually slowing down the code (run benchmarks to see it)
        //
        // first iteration: always a Newton-Raphson step
        //    if max_error > self.parameters.get_tolerance() {
        //        self.iter += 1;
        //        let proposed_guess = self.compute_newton_raphson_step(model);
        //        errors = self.update_model(model, &proposed_guess);
        //        max_error = errors.amax();
        //    }

        // other iterations
        while max_error > self.parameters.get_tolerance()
            && self.iter < self.parameters.get_max_iter()
        {
            self.iter += 1;

            let proposed_guess = match self.parameters.get_resolution_method() {
                ResolutionMethod::NewtonRaphson => self.compute_newton_raphson_step(model),
                ResolutionMethod::QuasiNewton(quasi_newton_method) => {
                    self.compute_quasi_newton_step(model, quasi_newton_method)
                }
            };

            errors = self.update_model(model, &proposed_guess);
            max_error = errors.amax();
        }
    }

    fn parameters_to_log(&self) {
        self.solver_log.as_ref().unwrap().add_parameters(
            &self.parameters.to_string(),
            &self.iters_params.to_string(),
            &self.residuals_config.to_string(),
        );
    }

    fn iteration_to_log<M>(&self, model: &M, errors: &nalgebra::OVector<f64, D>)
    where
        M: model::Model<D>,
    {
        let iteratives = model.get_iteratives();
        let residuals = model.get_residuals();
        self.solver_log.as_ref().unwrap().add_new_iteration(
            &iteratives,
            &residuals,
            errors,
            self.iter,
        );
    }

    fn recompute_jacobian_to_log(&self) {
        self.solver_log.as_ref().unwrap().add_content(
            &"Iteration refused, the jacobian will be recomputed at the next iteration\n\n",
        );
    }

    fn damping_to_log<M>(&self, model: &M, errors: &nalgebra::OVector<f64, D>)
    where
        M: model::Model<D>,
    {
        let iteratives = model.get_iteratives();
        let residuals = model.get_residuals();
        self.solver_log
            .as_ref()
            .unwrap()
            .add_damping(&iteratives, &residuals, errors);
    }

    fn jac_to_log(&self) {
        self.solver_log
            .as_ref()
            .unwrap()
            .add_content(&self.jacobian.to_string());
    }
}