1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//! `netsim` is a crate for simulating networks for the sake of testing network-oriented Rust
//! code. You can use it to run Rust functions in network-isolated containers, and assemble
//! virtual networks for these functions to communicate over.
//!
//! # Spawning threads into isolated network namespaces
//!
//! Network namespaces are a linux feature which can provide a thread or process with its own view
//! of the system's network interfaces and routing table. This crate's `spawn` module provides
//! functions for spawning threads into their own network namespaces. The most primitive of these
//! functions is `new_namespace`, which is demonstrated below. In this example we list the visible
//! network interfaces using the [`get_if_addrs`](https://crates.io/crates/get_if_addrs) crate.
//!
//! ```rust
//! extern crate netsim;
//! extern crate get_if_addrs;
//! use netsim::spawn;
//! 
//! // First, check that there is more than one network interface. This will generally be true
//! // since there will at least be the loopback interface.
//! let interfaces = get_if_addrs::get_if_addrs().unwrap();
//! assert!(interfaces.len() > 0);
//! 
//! // Now check how many network interfaces we can see inside a fresh network namespace. There
//! // should be zero.
//! let join_handle = spawn::new_namespace(|| {
//!     get_if_addrs::get_if_addrs().unwrap()
//! });
//! let interfaces = join_handle.join().unwrap();
//! assert!(interfaces.is_empty());
//! ```
//!
//! This demonstrates how to launch a thread - perhaps running an automated test - into a clean
//! environment. However an environment with no network interfaces is pretty useless...
//!
//! # Creating virtual interfaces
//!
//! We can create virtual IP and Ethernet interfaces using the types in the `iface` module. For
//! example, `Ipv4Iface` lets you create a new IP (TUN) interface and implements `futures::{Stream,
//! Sink}` so that you can read/write raw packets to it.
//!
//! ```rust,no_run
//! extern crate netsim;
//! extern crate tokio_core;
//! extern crate futures;
//!
//! use std::net::Ipv4Addr;
//! use tokio_core::reactor::Core;
//! use futures::{Future, Stream};
//! use netsim::iface::Ipv4IfaceBuilder;
//! 
//! let mut core = Core::new().unwrap();
//! let handle = core.handle();
//! 
//! // Create a network interface named "netsim"
//! let iface = {
//!     Ipv4IfaceBuilder::new()
//!     .name("netsim")
//!     .address(Ipv4Addr::new(192, 168, 0, 23))
//!     .netmask(Ipv4Addr::new(255, 255, 255, 0))
//!     .build(&handle)
//!     .unwrap()
//! };
//! 
//! // Read the first `Ipv4Packet` sent from the interface.
//! let packet = core.run({
//!     iface
//!     .into_future()
//!     .map_err(|(e, _)| e)
//!     .map(|(packet_opt, _)| packet_opt.unwrap())
//! }).unwrap();
//! ```
//!
//! However for simply testing network code, you don't need to create interfaces manually like
//! this.
//!
//! # Sandboxing network code
//!
//! Rather than performing the above two steps individually you can use the functions in the
//! `spawn` module to set up various network environments for you. For example,
//! `spawn::on_subnet_v4` will spawn a thread with a single network interface configured to use the
//! given subnet. It returns a `JoinHandle` to join the thread with and an `Ipv4Plug` to read/write
//! packets to the thread's network interface.
//!
//! ```rust
//! extern crate netsim;
//! extern crate tokio_core;
//! extern crate futures;
//!
//! use std::net::UdpSocket;
//! use tokio_core::reactor::Core;
//! use futures::{Future, Stream};
//! use netsim::{spawn, SubnetV4};
//! use netsim::wire::Ipv4Payload;
//!
//! let mut core = Core::new().unwrap();
//! let handle = core.handle();
//!
//! let subnet = SubnetV4::local_10();
//! let (join_handle, plug) = spawn::on_subnet_v4(&handle, subnet, |ip_addr| {
//!     let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
//!     socket.send_to(b"hello world", "10.1.2.3:4567").unwrap();
//! });
//!
//! core.run({
//!     plug.rx
//!     .into_future()
//!     .map(|(packet_opt, _)| {
//!         let packet = packet_opt.unwrap();
//!         match packet.payload() {
//!             Ipv4Payload::Udp(udp) => {
//!                 assert_eq!(&udp.payload()[..], &b"hello world"[..]);
//!             },
//!             _ => panic!(),
//!         }
//!     })
//! }).unwrap()
//! ```
//!
//! # Simulating networks of communicating nodes
//!
//! To simulate a bunch of IPv4-connected nodes you can use the functions in the `node` module
//! along with the `spawn::network_v4` function to describe and launch a simluated network test.
//!
//! ```rust
//! extern crate tokio_core;
//! extern crate future_utils;
//! extern crate netsim;
//! 
//! use std::net::UdpSocket;
//! use tokio_core::reactor::Core;
//! use netsim::{spawn, node, SubnetV4};
//! 
//! let mut core = Core::new().unwrap();
//! let handle = core.handle();
//!
//! let (tx, rx) = std::sync::mpsc::channel();
//! let node_a = node::endpoint_v4(move |ip_addr| {
//!     let socket = UdpSocket::bind(("0.0.0.0", 1234)).unwrap();
//!     tx.send(ip_addr).unwrap();
//!     let mut buffer = [0; 1024];
//!     let (n, addr) = socket.recv_from(&mut buffer).unwrap();
//!     buffer[..n].to_owned()
//! });
//!
//! let node_b = node::endpoint_v4(move |_ip_addr| {
//!     let ip = rx.recv().unwrap();
//!     let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
//!     socket.send_to(b"hello world", (ip, 1234)).unwrap();
//! });
//!
//! let router_node = node::router_v4((node_a, node_b));
//! let (join_handle, _plug) = spawn::network_v4(&handle, SubnetV4::global(), router_node);
//! let (received, ()) = core.run(future_utils::thread_future(|| {
//!     join_handle.join().unwrap()
//! })).unwrap();
//! assert_eq!(&received[..], b"hello world");
//! ```
//!
//! Note that we need to make sure to drive the `Core` while blocking on the `JoinHandle` in a
//! separate thread. A future version of this library may clean this situation up.
//!
//! # All the rest
//!
//! It's possible to set up more complicated (non-hierarchal) network topologies, ethernet
//! networks, namespaces with multiple interfaces etc. by directly using the primitives in this
//! library. Have an explore of the API, and if anything needs clarification or could be designed
//! better then drop a message on the bug tracker :)

#![cfg_attr(feature="clippy", feature(plugin))]
#![cfg_attr(feature="clippy", plugin(clippy))]

#![deny(missing_docs)]
#![cfg_attr(feature="clippy", allow(redundant_field_names))]
#![cfg_attr(feature="clippy", allow(single_match))]
#![cfg_attr(feature="clippy", allow(match_same_arms))]

extern crate libc;
extern crate rand;
extern crate byteorder;
extern crate bytes;
#[macro_use]
extern crate unwrap;
extern crate void;
extern crate get_if_addrs;
#[macro_use]
extern crate net_literals;
#[macro_use]
extern crate quick_error;
#[macro_use]
extern crate ioctl_sys;
#[macro_use]
extern crate log;
extern crate mio;
extern crate futures;
extern crate tokio_io;
extern crate tokio_core;
#[macro_use]
extern crate rand_derive;
extern crate future_utils;

#[cfg(test)]
extern crate capabilities;
#[cfg(test)]
extern crate env_logger;
#[cfg(test)]
extern crate statrs;

/// Convert a variable-length slice to a fixed-length array
macro_rules! slice_assert_len {
    ($len:tt, $slice:expr) => {{

        use std::ptr;

        union MaybeUninit<T: Copy> {
            init: T,
            uninit: (),
        }
        
        assert_eq!($slice.len(), $len);
        let mut array: MaybeUninit<[_; $len]> = MaybeUninit { uninit: () };
        let slice: &[_] = $slice;
        for (i, x) in slice.iter().enumerate() {
            unsafe {
                ptr::write(&mut array.init[i], *x)
            }
        }

        unsafe {
            array.init
        }
    }}
}

mod priv_prelude;
mod util;
mod sys;
mod async_fd;
mod route;
mod subnet;
pub mod iface;
pub mod node;
pub mod device;
pub mod wire;
pub mod spawn;

pub use subnet::SubnetV4;
pub use route::{RouteV4, AddRouteError};