1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! # Erdős-Rényi ensemble with target connectivity
//! * Draw from an Erdős-Rényi graph ensemble with a target connectivity.
//! * In this model, all possible edges are equally likely
//! * The number of edges is variable
//!
//! # Citations
//! > P. Erdős and A. Rényi, "On the evolution of random graphs,"
//!   Publ. Math. Inst. Hungar. Acad. Sci. **5**, 17-61 (1960)

use crate::graph::Graph;
use crate::GraphErrors;
use crate::Node;
use crate::traits::*;

/// # Returned by Monte Carlo Steps
#[derive(Debug, Clone)]
pub enum ErStepC {
    /// nothing was changed
    Nothing,
    /// an edge was added
    AddedEdge((u32, u32)),
    /// an edge was removed
    RemovedEdge((u32, u32)),
    /// a GraphError occured and is wrapped here
    GError(GraphErrors),
}

impl ErStepC {
    /// `true` if `self` is not `GError` variant
    pub fn is_valid(&self) -> bool {
        match self {
            Self::GError(_)     => false,
            _                   => true,
        }
    }

    /// `panic!` if `self` is `GError` variant
    pub fn valid_or_panic(&self) {
        match self {
            Self::GError(error) => panic!("ErStepC - invalid - {}", error),
            _                   => (),
        }
    }

    /// `panic!(msg)` if `self` is `GError` variant 
    pub fn valid_or_panic_msg(&self, msg: &str) {
        match self {
            Self::GError(error) => panic!("ErStepC - invalid {}- {}", msg, error),
            _                   => (),
        }
    }
}

/// # Implements Erdős-Rényi graph ensemble
/// * variable number of edges
/// * targets a connectivity
#[derive(Debug, Clone)]
pub struct ErEnsembleC<T: Node, R: rand::Rng> {
    graph: Graph<T>,
    prob: f64,
    c_target: f64,
    rng: R,
}

impl<T, R> EnsembleRng<ErStepC, ErStepC, R> for ErEnsembleC<T, R>
    where   T: Node,
            R: rand::Rng,
{
    /// # Access RNG
    /// If, for some reason, you want access to the internal random number generator: Here you go
    fn rng(&mut self) -> &mut R {
        &mut self.rng
    }

    /// # Swap random number generator
    /// * returns old internal rng
    fn swap_rng(&mut self, mut rng: R) -> R {
        std::mem::swap(&mut self.rng, &mut rng);
        rng
    }
}

impl<T, R> Ensemble<ErStepC, ErStepC> for ErEnsembleC<T, R>
    where   T: Node,
            R: rand::Rng,
{
    /// # Randomizes the edges according to Er probabilities
    /// * this is used by `ErEnsembleC::new` to create the initial topology
    /// * you can use this for sampling the ensemble
    /// * runs in `O(vertices * vertices)`
    fn randomize(&mut self) {
        self.graph.clear_edges();
        // iterate over all possible edges once
        for i in 0..self.graph.vertex_count() {
            for j in i+1..self.graph.vertex_count() {
                if self.rng.gen::<f64>() <= self.prob {
                    self.graph.add_edge(i, j).unwrap();
                }
            }
        }
    }

    /// # Monte Carlo step
    /// * use this to perform a Monte Carlo step
    /// * result `ErStepC` can be used to undo the step with `self.undo_step(result)`
    fn mc_step(&mut self) -> ErStepC {
        let edge = draw_two_from_range(&mut self.rng, self.graph.vertex_count());

        // Try to add edge. else: remove edge
        if self.rng.gen::<f64>() <= self.prob {

            let success = self.graph.add_edge(edge.0, edge.1);
            match success {
                Ok(_)  => ErStepC::AddedEdge(edge),
                Err(_) => ErStepC::Nothing,
            }

        } else {

            let success =  self.graph.remove_edge(edge.0, edge.1);
            match success {
                Ok(_)  => ErStepC::RemovedEdge(edge),
                Err(_) => ErStepC::Nothing,
            }
        }
    }

    /// # Undo a Monte Carlo step
    /// * adds removed edge, or removes added edge, or does nothing
    /// * if it returns an Err value, you probably used the function wrong
    /// ## Important:
    /// Restored graph is the same as before the random step **except** the order of nodes
    /// in the adjacency list might be shuffled!
    fn undo_step(&mut self, step: ErStepC) -> ErStepC {
        match step {
            ErStepC::AddedEdge(edge)     => {
                let res = self.graph.remove_edge(edge.0, edge.1);
                match res {
                    Err(err)        => ErStepC::GError(err),
                    Ok(_)           => ErStepC::RemovedEdge(edge),
                }
            },
            ErStepC::RemovedEdge(edge)   => {
                let res = self.graph.add_edge(edge.0, edge.1);
                match res {
                    Err(err)     => ErStepC::GError(err),
                    Ok(_)        => ErStepC::AddedEdge(edge),
                }
            },
            ErStepC::Nothing |
            ErStepC::GError(_)   => step,
        }
    }

    /// # Undo a Monte Carlo step
    /// * adds removed edge, or removes added edge, or does nothing
    /// * if it returns an Err value, you probably used the function wrong
    /// ## Important:
    /// Restored graph is the same as before the random step **except** the order of nodes
    /// in the adjacency list might be shuffled!
    fn undo_step_quiet(&mut self, step: ErStepC) -> () {
        match step {
            ErStepC::AddedEdge(edge)     => {
                let res = self.graph.remove_edge(edge.0, edge.1);
                if res.is_err() {
                    panic!("ErEnsembleC - undo_step - panic {:?}", res.unwrap_err());
                }
                ()
            },
            ErStepC::RemovedEdge(edge)   => {
                let res = self.graph.add_edge(edge.0, edge.1);
                if res.is_err() {
                    panic!("ErEnsembleC - undo_step - panic {:?}", res.unwrap_err());
                }
                ()
            },
            _       => step.valid_or_panic_msg("ErEnsembleC - quiet")
        }
    }
}

impl<T: Node, R: rand::Rng> ErEnsembleC<T, R> {
    /// # Initialize
    /// create new `ErEnsembleC` with:
    /// * `n` vertices
    /// * target connectivity `c_target`
    /// * `rng` is consumed and used as random number generator in the following
    /// * internally uses `Graph<T>::new(n)`
    /// * generates random edges according to ER model
    pub fn new(n: u32, c_target: f64, rng: R) -> Self {
        let prob = c_target / (n - 1) as f64;
        let graph: Graph<T> = Graph::new(n);
        let mut e = ErEnsembleC {
            graph,
            c_target,
            prob,
            rng,
        };
        e.randomize();
        e
    }

    /// returns target connectivity
    /// # Explanation
    /// The target connectivity `c_target` is used to
    /// calculate the probability `p`, that any two vertices `i` and `j` (where `i != j`)
    /// are connected.
    ///
    /// `p = c_target / (N - 1)`
    /// where `N` is the number of vertices in the graph
    pub fn target_connectivity(&self) -> f64 {
        self.c_target
    }

    /// * set new value for target connectivity
    /// ## Note
    /// * will only set the value (and probability), which will be used from now on
    /// * if you also want to create a new sample, call `randomize` afterwards
    pub fn set_target_connectivity(&mut self, c_target: f64) {
        let prob = c_target / (self.graph().vertex_count() - 1) as f64;
        self.prob = prob;
        self.c_target = c_target;
    }

    fn graph_mut(&mut self) -> &mut Graph<T> {
        &mut self.graph
    }

    /// # Sort adjecency lists
    /// If you depend on the order of the adjecency lists, you can sort them
    /// # Performance
    /// * internally uses [pattern-defeating quicksort](https://github.com/orlp/pdqsort)
    /// as long as that is the standard
    /// * sorts an adjecency list with length `d` in worst-case: `O(d log(d))`
    /// * is called for each adjecency list, i.e., `self.vertex_count()` times
    pub fn sort_adj(&mut self) {
        self.graph_mut().sort_adj();
    }

    /// returns reference to the underlying topology aka, the `Graph<T>`
    ///
    /// Use this to call functions regarding the topology
    pub fn graph(&self) -> &Graph<T> {
        &self.graph
    }

    /// access additional information at vertex
    pub fn at(&self, index: usize) -> & T {
        self.graph.at(index)
    }

    /// mutable access of additional information at index
    pub fn at_mut(&mut self, index: usize) -> &mut T {
        self.graph.at_mut(index)
    }
}

/// high is exclusive
fn draw_two_from_range<T: rand::Rng>(rng: &mut T, high: u32) -> (u32, u32){
    let first = rng.gen_range(0, high);
    let second = rng.gen_range(0, high - 1);
    return if second < first {
        (first, second)
    } else {
        (first, second + 1)
    }
}

#[cfg(test)]
mod testing {
    use super::*;
    use rand_pcg::Pcg64;
    use crate::EmptyNode;
    use rand::SeedableRng;

    #[test]
    fn test_edge_count() {
        // create empty graph
        let rng = Pcg64::seed_from_u64(12);
        let mut e = ErEnsembleC::<EmptyNode, Pcg64>::new(100, 0.0, rng);
        let ec = e.graph().edge_count();
        assert_eq!(0, ec);
        // empty graph should not be connected:
        assert!(
            !e.graph()
                .is_connected()
                .expect("test_edge_count error 1")
        );

        // add edge
        e.graph_mut()
            .add_edge(0, 1)
            .unwrap();
        let ec_1 = e.graph().edge_count();
        assert_eq!(1, ec_1);

        let mut res = e.graph_mut()
            .add_edge(0, 1);
        assert!(res.is_err());

        // remove edge
        e.graph_mut()
            .remove_edge(0, 1)
            .unwrap();
        let ec_0 = e.graph().edge_count();
        assert_eq!(0, ec_0);

        res = e.graph_mut()
            .remove_edge(0, 1);
        assert!(res.is_err());
    }

    #[test]
    fn draw_2(){
        let mut rng = Pcg64::seed_from_u64(762132);
        for _i in 0..100 {
            let (first, second) = draw_two_from_range(&mut rng, 2);
            assert!(first != second);
        }
        for i in 2..100 {
            let (first, second) = draw_two_from_range(&mut rng, i);
            assert!(first != second);
        }
    }
}