
Poseidon in Filecoin. Final report. 3 June 2020
Review by ADBK Consulting
Mikhail Vladimirov and Dmitry Khovratovich

Introduction

We were asked by Protocol Labs to review the implementation and the usage of hash function
Poseidon (https://eprint.iacr.org/2019/458.pdf). We consulted the Filecoin whitepaper
(https://filecoin.io/filecoin.pdf), the privacy preserving proof of storage protocol (supplied privately by
Protocol Labs), and the code, where we reviewed the Neptune library (https://github.com/filecoin-

project/neptune/tree/f08cc42b8f3894f25cef920d9732d63a1c8cbd22) (the implementation of Poseidon) and
rust-fil-proofs library (https://github.com/filecoin-project/rust-fil-proofs/tree/tnet2) (the PoS protocol and its
circuits).

Our findings

We carefully studied the protocol and the implementation, and prepared a separate report
(https://hackmd.io/41SV4vsfQseM1EN8rgdCmQ). In particular, we checked that:

The Poseidon permutation parameters (round number, internal constants) are selected
properly according to the authors’ recommendations.
The optimized version of the Poseidon permutation, where a more sparse but equivalent
matrix is used, is produced correctly.
The circuit for the Poseidon hash is implemented correctly and corresponds to the regular
implementation.

We also discovered the following issues:

Some hash functions based on the Poseidon permutation are not designed correctly. We
recommended a small but sufficient fix that takes the message length into account.
There is a very wide version of Poseidon for long message hashing, which is correct and
secure but probably too slow.
There is some redundancy in padding.
Round constants for the Poseidon permutation use a bit order that differs from the
reference implementation.
Several equivalent implementations of Poseidon are not used.

https://eprint.iacr.org/2019/458.pdf
https://filecoin.io/filecoin.pdf
https://github.com/filecoin-project/neptune/tree/f08cc42b8f3894f25cef920d9732d63a1c8cbd22
https://github.com/filecoin-project/rust-fil-proofs/tree/tnet2
https://hackmd.io/41SV4vsfQseM1EN8rgdCmQ


Resolved issues

We checked that all security-critical issues are resolved in the latest commits available:

Constant generation is fixed (https://github.com/filecoin-

project/neptune/pull/23/commits/c8b12c55101c46e05482291912face12300962c3).
Unused code is refactored into separate files (https://github.com/filecoin-

project/neptune/pull/23/commits/08b5164a718d97f94faf1fb3ae694d370c9d28f1).
The incorrect hash functions are no longer used.

As reported by Filecoin designers, the version of Poseidon with width 9, which allows Merkle
trees of arity 8, results in faster Merkle proofs and tree construction in the Filecoin environment.
Therefore a concern about too wide permutations is no longer relevant.

Other recommendations

We were also asked to provide a set of parameters for the Poseidon permutation which would
provide a bigger security margin against potential attack. We suggested that a 25% increase in
the number of rounds should prevent most of attacks, so that even if there is one, the

complexity is almost certainly above . We consulted with several other Poseidon authors in
private communication, and got their confirmation that it is a sound choice.

264

https://github.com/filecoin-project/neptune/pull/23/commits/c8b12c55101c46e05482291912face12300962c3
https://github.com/filecoin-project/neptune/pull/23/commits/08b5164a718d97f94faf1fb3ae694d370c9d28f1

