1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! A set implemented on a trie. Unlike `std::collections::HashSet` the elements in this set are not
//! hashed but are instead serialized.
use crate::collections::{append, append_slice, Vector};
use crate::{env, IntoStorageKey};
use borsh::{BorshDeserialize, BorshSerialize};
use std::mem::size_of;

const ERR_INCONSISTENT_STATE: &str = "The collection is an inconsistent state. Did previous smart contract execution terminate unexpectedly?";
const ERR_ELEMENT_SERIALIZATION: &str = "Cannot serialize element with Borsh";

/// An iterable implementation of a set that stores its content directly on the trie.
#[derive(BorshSerialize, BorshDeserialize)]
pub struct UnorderedSet<T> {
    element_index_prefix: Vec<u8>,
    elements: Vector<T>,
}

impl<T> UnorderedSet<T> {
    /// Returns the number of elements in the set, also referred to as its size.
    pub fn len(&self) -> u64 {
        self.elements.len()
    }

    /// Returns `true` if the set contains no elements.
    pub fn is_empty(&self) -> bool {
        self.elements.is_empty()
    }

    /// Create new map with zero elements. Use `id` as a unique identifier.
    pub fn new<S>(prefix: S) -> Self
    where
        S: IntoStorageKey,
    {
        let prefix = prefix.into_storage_key();
        let element_index_prefix = append(&prefix, b'i');
        let elements_prefix = append(&prefix, b'e');

        Self { element_index_prefix, elements: Vector::new(elements_prefix) }
    }

    fn serialize_index(index: u64) -> [u8; size_of::<u64>()] {
        index.to_le_bytes()
    }

    fn deserialize_index(raw_index: &[u8]) -> u64 {
        let mut result = [0u8; size_of::<u64>()];
        result.copy_from_slice(raw_index);
        u64::from_le_bytes(result)
    }

    fn raw_element_to_index_lookup(&self, element_raw: &[u8]) -> Vec<u8> {
        append_slice(&self.element_index_prefix, element_raw)
    }

    /// Returns true if the set contains a serialized element.
    fn contains_raw(&self, element_raw: &[u8]) -> bool {
        let index_lookup = self.raw_element_to_index_lookup(element_raw);
        env::storage_has_key(&index_lookup)
    }

    /// Adds a value to the set.
    /// If the set did not have this value present, `true` is returned.
    /// If the set did have this value present, `false` is returned.
    pub fn insert_raw(&mut self, element_raw: &[u8]) -> bool {
        let index_lookup = self.raw_element_to_index_lookup(element_raw);
        match env::storage_read(&index_lookup) {
            Some(_index_raw) => false,
            None => {
                // The element does not exist yet.
                let next_index = self.len();
                let next_index_raw = Self::serialize_index(next_index);
                env::storage_write(&index_lookup, &next_index_raw);
                self.elements.push_raw(element_raw);
                true
            }
        }
    }

    /// Removes a value from the set. Returns whether the value was present in the set.
    pub fn remove_raw(&mut self, element_raw: &[u8]) -> bool {
        let index_lookup = self.raw_element_to_index_lookup(element_raw);
        match env::storage_read(&index_lookup) {
            Some(index_raw) => {
                #[allow(clippy::branches_sharing_code)]
                if self.len() == 1 {
                    // If there is only one element then swap remove simply removes it without
                    // swapping with the last element.
                    env::storage_remove(&index_lookup);
                } else {
                    // If there is more than one element then swap remove swaps it with the last
                    // element.
                    let last_element_raw = match self.elements.get_raw(self.len() - 1) {
                        Some(x) => x,
                        None => env::panic_str(ERR_INCONSISTENT_STATE),
                    };
                    env::storage_remove(&index_lookup);
                    // If the removed element was the last element from keys, then we don't need to
                    // reinsert the lookup back.
                    if last_element_raw != element_raw {
                        let last_lookup_element =
                            self.raw_element_to_index_lookup(&last_element_raw);
                        env::storage_write(&last_lookup_element, &index_raw);
                    }
                }
                let index = Self::deserialize_index(&index_raw);
                self.elements.swap_remove_raw(index);
                true
            }
            None => false,
        }
    }
}

impl<T> UnorderedSet<T>
where
    T: BorshSerialize + BorshDeserialize,
{
    fn serialize_element(element: &T) -> Vec<u8> {
        match element.try_to_vec() {
            Ok(x) => x,
            Err(_) => env::panic_str(ERR_ELEMENT_SERIALIZATION),
        }
    }

    /// Returns true if the set contains an element.
    pub fn contains(&self, element: &T) -> bool {
        self.contains_raw(&Self::serialize_element(element))
    }

    /// Removes a value from the set. Returns whether the value was present in the set.
    pub fn remove(&mut self, element: &T) -> bool {
        self.remove_raw(&Self::serialize_element(element))
    }

    /// Adds a value to the set.
    /// If the set did not have this value present, `true` is returned.
    /// If the set did have this value present, `false` is returned.
    pub fn insert(&mut self, element: &T) -> bool {
        self.insert_raw(&Self::serialize_element(element))
    }

    /// Clears the map, removing all elements.
    pub fn clear(&mut self) {
        for raw_element in self.elements.iter_raw() {
            let index_lookup = self.raw_element_to_index_lookup(&raw_element);
            env::storage_remove(&index_lookup);
        }
        self.elements.clear();
    }

    /// Copies elements into an `std::vec::Vec`.
    pub fn to_vec(&self) -> std::vec::Vec<T> {
        self.iter().collect()
    }

    /// Iterate over deserialized elements.
    pub fn iter(&self) -> impl Iterator<Item = T> + '_ {
        self.elements.iter()
    }

    pub fn extend<IT: IntoIterator<Item = T>>(&mut self, iter: IT) {
        for el in iter {
            self.insert(&el);
        }
    }

    /// Returns a view of elements as a vector.
    /// It's sometimes useful to have random access to the elements.
    pub fn as_vector(&self) -> &Vector<T> {
        &self.elements
    }
}

impl<T> std::fmt::Debug for UnorderedSet<T>
where
    T: std::fmt::Debug + BorshSerialize + BorshDeserialize,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("UnorderedSet")
            .field("element_index_prefix", &self.element_index_prefix)
            .field("elements", &self.elements)
            .finish()
    }
}

#[cfg(not(target_arch = "wasm32"))]
#[cfg(test)]
mod tests {
    use crate::collections::UnorderedSet;
    use rand::seq::SliceRandom;
    use rand::{Rng, SeedableRng};
    use std::collections::HashSet;
    use std::iter::FromIterator;

    #[test]
    pub fn test_insert_one() {
        let mut map = UnorderedSet::new(b"m");
        assert!(map.insert(&1));
        assert!(!map.insert(&1));
    }

    #[test]
    pub fn test_insert() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(0);
        for _ in 0..500 {
            let key = rng.gen::<u64>();
            set.insert(&key);
        }
    }

    #[test]
    pub fn test_insert_remove() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(1);
        let mut keys = vec![];
        for _ in 0..100 {
            let key = rng.gen::<u64>();
            keys.push(key);
            set.insert(&key);
        }
        keys.shuffle(&mut rng);
        for key in keys {
            assert!(set.remove(&key));
        }
    }

    #[test]
    pub fn test_remove_last_reinsert() {
        let mut set = UnorderedSet::new(b"s");
        let key1 = 1u64;
        set.insert(&key1);
        let key2 = 2u64;
        set.insert(&key2);

        let actual = set.remove(&key2);
        assert!(actual);

        let actual_reinsert = set.insert(&key2);
        assert!(actual_reinsert);
    }

    #[test]
    pub fn test_insert_override_remove() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(2);
        let mut keys = vec![];
        for _ in 0..100 {
            let key = rng.gen::<u64>();
            keys.push(key);
            set.insert(&key);
        }
        keys.shuffle(&mut rng);
        for key in &keys {
            assert!(!set.insert(key));
        }
        keys.shuffle(&mut rng);
        for key in keys {
            assert!(set.remove(&key));
        }
    }

    #[test]
    pub fn test_contains_non_existent() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(3);
        let mut set_tmp = HashSet::new();
        for _ in 0..500 {
            let key = rng.gen::<u64>() % 20_000;
            set_tmp.insert(key);
            set.insert(&key);
        }
        for _ in 0..500 {
            let key = rng.gen::<u64>() % 20_000;
            assert_eq!(set.contains(&key), set_tmp.contains(&key));
        }
    }

    #[test]
    pub fn test_to_vec() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(4);
        let mut keys = HashSet::new();
        for _ in 0..500 {
            let key = rng.gen::<u64>();
            keys.insert(key);
            set.insert(&key);
        }
        let actual = HashSet::from_iter(set.to_vec());
        assert_eq!(actual, keys);
    }

    #[test]
    pub fn test_clear() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(5);
        for _ in 0..10 {
            for _ in 0..=(rng.gen::<u64>() % 20 + 1) {
                let key = rng.gen::<u64>();
                set.insert(&key);
            }
            assert!(!set.to_vec().is_empty());
            set.clear();
            assert!(set.to_vec().is_empty());
        }
    }

    #[test]
    pub fn test_iter() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(4);
        let mut keys = HashSet::new();
        for _ in 0..500 {
            let key = rng.gen::<u64>();
            keys.insert(key);
            set.insert(&key);
        }
        let actual: HashSet<u64> = set.iter().collect();
        assert_eq!(actual, keys);
    }

    #[test]
    pub fn test_extend() {
        let mut set = UnorderedSet::new(b"s");
        let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(4);
        let mut keys = HashSet::new();
        for _ in 0..100 {
            let key = rng.gen::<u64>();
            keys.insert(key);
            set.insert(&key);
        }
        for _ in 0..10 {
            let mut tmp = vec![];
            for _ in 0..=(rng.gen::<u64>() % 20 + 1) {
                let key = rng.gen::<u64>();
                tmp.push(key);
            }
            keys.extend(tmp.iter().cloned());
            set.extend(tmp.iter().cloned());
        }

        let actual: HashSet<u64> = set.iter().collect();
        assert_eq!(actual, keys);
    }

    #[test]
    fn test_debug() {
        let mut set = UnorderedSet::new(b"m");
        set.insert(&1u64);
        set.insert(&3u64);
        set.insert(&2u64);

        if cfg!(feature = "expensive-debug") {
            assert_eq!(
                format!("{:?}", set),
                "UnorderedSet { element_index_prefix: [109, 105], elements: [1, 3, 2] }"
            );
        } else {
            assert_eq!(
                format!("{:?}", set),
                "UnorderedSet { element_index_prefix: [109, 105], elements: Vector { len: 3, prefix: [109, 101] } }"
            );
        }
    }
}