1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use crate::dimension::IntoDimension;
use crate::Dimension;
use crate::order::Order;

/// A contiguous array shape of n dimensions.
///
/// Either c- or f- memory ordered (*c* a.k.a *row major* is the default).
#[derive(Copy, Clone, Debug)]
pub struct Shape<D> {
    /// Shape (axis lengths)
    pub(crate) dim: D,
    /// Strides can only be C or F here
    pub(crate) strides: Strides<Contiguous>,
}

#[derive(Copy, Clone, Debug)]
pub(crate) enum Contiguous {}

impl<D> Shape<D> {
    pub(crate) fn is_c(&self) -> bool {
        matches!(self.strides, Strides::C)
    }
}

/// An array shape of n dimensions in c-order, f-order or custom strides.
#[derive(Copy, Clone, Debug)]
pub struct StrideShape<D> {
    pub(crate) dim: D,
    pub(crate) strides: Strides<D>,
}

impl<D> StrideShape<D>
where
    D: Dimension,
{
    /// Return a reference to the dimension
    pub fn raw_dim(&self) -> &D {
        &self.dim
    }
    /// Return the size of the shape in number of elements
    pub fn size(&self) -> usize {
        self.dim.size()
    }
}

/// Stride description
#[derive(Copy, Clone, Debug)]
pub(crate) enum Strides<D> {
    /// Row-major ("C"-order)
    C,
    /// Column-major ("F"-order)
    F,
    /// Custom strides
    Custom(D),
}

impl<D> Strides<D> {
    /// Return strides for `dim` (computed from dimension if c/f, else return the custom stride)
    pub(crate) fn strides_for_dim(self, dim: &D) -> D
    where
        D: Dimension,
    {
        match self {
            Strides::C => dim.default_strides(),
            Strides::F => dim.fortran_strides(),
            Strides::Custom(c) => {
                debug_assert_eq!(
                    c.ndim(),
                    dim.ndim(),
                    "Custom strides given with {} dimensions, expected {}",
                    c.ndim(),
                    dim.ndim()
                );
                c
            }
        }
    }

    pub(crate) fn is_custom(&self) -> bool {
        matches!(*self, Strides::Custom(_))
    }
}

/// A trait for `Shape` and `D where D: Dimension` that allows
/// customizing the memory layout (strides) of an array shape.
///
/// This trait is used together with array constructor methods like
/// `Array::from_shape_vec`.
pub trait ShapeBuilder {
    type Dim: Dimension;
    type Strides;

    fn into_shape(self) -> Shape<Self::Dim>;
    fn f(self) -> Shape<Self::Dim>;
    fn set_f(self, is_f: bool) -> Shape<Self::Dim>;
    fn strides(self, strides: Self::Strides) -> StrideShape<Self::Dim>;
}

impl<D> From<D> for Shape<D>
where
    D: Dimension,
{
    /// Create a `Shape` from `dimension`, using the default memory layout.
    fn from(dimension: D) -> Shape<D> {
        dimension.into_shape()
    }
}

impl<T, D> From<T> for StrideShape<D>
where
    D: Dimension,
    T: ShapeBuilder<Dim = D>,
{
    fn from(value: T) -> Self {
        let shape = value.into_shape();
        let st = if shape.is_c() { Strides::C } else { Strides::F };
        StrideShape {
            strides: st,
            dim: shape.dim,
        }
    }
}

impl<T> ShapeBuilder for T
where
    T: IntoDimension,
{
    type Dim = T::Dim;
    type Strides = T;
    fn into_shape(self) -> Shape<Self::Dim> {
        Shape {
            dim: self.into_dimension(),
            strides: Strides::C,
        }
    }
    fn f(self) -> Shape<Self::Dim> {
        self.set_f(true)
    }
    fn set_f(self, is_f: bool) -> Shape<Self::Dim> {
        self.into_shape().set_f(is_f)
    }
    fn strides(self, st: T) -> StrideShape<Self::Dim> {
        self.into_shape().strides(st.into_dimension())
    }
}

impl<D> ShapeBuilder for Shape<D>
where
    D: Dimension,
{
    type Dim = D;
    type Strides = D;

    fn into_shape(self) -> Shape<D> {
        self
    }

    fn f(self) -> Self {
        self.set_f(true)
    }

    fn set_f(mut self, is_f: bool) -> Self {
        self.strides = if !is_f { Strides::C } else { Strides::F };
        self
    }

    fn strides(self, st: D) -> StrideShape<D> {
        StrideShape {
            dim: self.dim,
            strides: Strides::Custom(st),
        }
    }
}

impl<D> Shape<D>
where
    D: Dimension,
{
    /// Return a reference to the dimension
    pub fn raw_dim(&self) -> &D {
        &self.dim
    }
    /// Return the size of the shape in number of elements
    pub fn size(&self) -> usize {
        self.dim.size()
    }
}


/// Array shape argument with optional order parameter
///
/// Shape or array dimension argument, with optional [`Order`] parameter.
///
/// This is an argument conversion trait that is used to accept an array shape and
/// (optionally) an ordering argument.
///
/// See for example [`.to_shape()`](crate::ArrayBase::to_shape).
pub trait ShapeArg {
    type Dim: Dimension;
    fn into_shape_and_order(self) -> (Self::Dim, Option<Order>);
}

impl<T> ShapeArg for T where T: IntoDimension {
    type Dim = T::Dim;

    fn into_shape_and_order(self) -> (Self::Dim, Option<Order>) {
        (self.into_dimension(), None)
    }
}

impl<T> ShapeArg for (T, Order) where T: IntoDimension {
    type Dim = T::Dim;

    fn into_shape_and_order(self) -> (Self::Dim, Option<Order>) {
        (self.0.into_dimension(), Some(self.1))
    }
}