1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use crate::error::*;
use crate::{Dimension, Ix0, Ix1, Ix2, Ix3, Ix4, Ix5, Ix6, IxDyn};

/// Calculate the common shape for a pair of array shapes, that they can be broadcasted
/// to. Return an error if the shapes are not compatible.
///
/// Uses the [NumPy broadcasting rules]
//  (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html#general-broadcasting-rules).
pub(crate) fn co_broadcast<D1, D2, Output>(shape1: &D1, shape2: &D2) -> Result<Output, ShapeError>
where
    D1: Dimension,
    D2: Dimension,
    Output: Dimension,
{
    let (k, overflow) = shape1.ndim().overflowing_sub(shape2.ndim());
    // Swap the order if d2 is longer.
    if overflow {
        return co_broadcast::<D2, D1, Output>(shape2, shape1);
    }
    // The output should be the same length as shape1.
    let mut out = Output::zeros(shape1.ndim());
    for (out, s) in izip!(out.slice_mut(), shape1.slice()) {
        *out = *s;
    }
    for (out, s2) in izip!(&mut out.slice_mut()[k..], shape2.slice()) {
        if *out != *s2 {
            if *out == 1 {
                *out = *s2
            } else if *s2 != 1 {
                return Err(from_kind(ErrorKind::IncompatibleShape));
            }
        }
    }
    Ok(out)
}

pub trait DimMax<Other: Dimension> {
    /// The resulting dimension type after broadcasting.
    type Output: Dimension;
}

/// Dimensions of the same type remain unchanged when co_broadcast.
/// So you can directly use D as the resulting type.
/// (Instead of <D as DimMax<D>>::BroadcastOutput)
impl<D: Dimension> DimMax<D> for D {
    type Output = D;
}

macro_rules! impl_broadcast_distinct_fixed {
    ($smaller:ty, $larger:ty) => {
        impl DimMax<$larger> for $smaller {
            type Output = $larger;
        }

        impl DimMax<$smaller> for $larger {
            type Output = $larger;
        }
    };
}

impl_broadcast_distinct_fixed!(Ix0, Ix1);
impl_broadcast_distinct_fixed!(Ix0, Ix2);
impl_broadcast_distinct_fixed!(Ix0, Ix3);
impl_broadcast_distinct_fixed!(Ix0, Ix4);
impl_broadcast_distinct_fixed!(Ix0, Ix5);
impl_broadcast_distinct_fixed!(Ix0, Ix6);
impl_broadcast_distinct_fixed!(Ix1, Ix2);
impl_broadcast_distinct_fixed!(Ix1, Ix3);
impl_broadcast_distinct_fixed!(Ix1, Ix4);
impl_broadcast_distinct_fixed!(Ix1, Ix5);
impl_broadcast_distinct_fixed!(Ix1, Ix6);
impl_broadcast_distinct_fixed!(Ix2, Ix3);
impl_broadcast_distinct_fixed!(Ix2, Ix4);
impl_broadcast_distinct_fixed!(Ix2, Ix5);
impl_broadcast_distinct_fixed!(Ix2, Ix6);
impl_broadcast_distinct_fixed!(Ix3, Ix4);
impl_broadcast_distinct_fixed!(Ix3, Ix5);
impl_broadcast_distinct_fixed!(Ix3, Ix6);
impl_broadcast_distinct_fixed!(Ix4, Ix5);
impl_broadcast_distinct_fixed!(Ix4, Ix6);
impl_broadcast_distinct_fixed!(Ix5, Ix6);
impl_broadcast_distinct_fixed!(Ix0, IxDyn);
impl_broadcast_distinct_fixed!(Ix1, IxDyn);
impl_broadcast_distinct_fixed!(Ix2, IxDyn);
impl_broadcast_distinct_fixed!(Ix3, IxDyn);
impl_broadcast_distinct_fixed!(Ix4, IxDyn);
impl_broadcast_distinct_fixed!(Ix5, IxDyn);
impl_broadcast_distinct_fixed!(Ix6, IxDyn);


#[cfg(test)]
#[cfg(feature = "std")]
mod tests {
    use super::co_broadcast;
    use crate::{Dimension, Dim, DimMax, ShapeError, Ix0, IxDynImpl, ErrorKind};

    #[test]
    fn test_broadcast_shape() {
        fn test_co<D1, D2>(
            d1: &D1,
            d2: &D2,
            r: Result<<D1 as DimMax<D2>>::Output, ShapeError>,
        ) where
            D1: Dimension + DimMax<D2>,
            D2: Dimension,
        {
            let d = co_broadcast::<D1, D2, <D1 as DimMax<D2>>::Output>(&d1, d2);
            assert_eq!(d, r);
        }
        test_co(&Dim([2, 3]), &Dim([4, 1, 3]), Ok(Dim([4, 2, 3])));
        test_co(
            &Dim([1, 2, 2]),
            &Dim([1, 3, 4]),
            Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)),
        );
        test_co(&Dim([3, 4, 5]), &Ix0(), Ok(Dim([3, 4, 5])));
        let v = vec![1, 2, 3, 4, 5, 6, 7];
        test_co(
            &Dim(vec![1, 1, 3, 1, 5, 1, 7]),
            &Dim([2, 1, 4, 1, 6, 1]),
            Ok(Dim(IxDynImpl::from(v.as_slice()))),
        );
        let d = Dim([1, 2, 1, 3]);
        test_co(&d, &d, Ok(d));
        test_co(
            &Dim([2, 1, 2]).into_dyn(),
            &Dim(0),
            Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)),
        );
        test_co(
            &Dim([2, 1, 1]),
            &Dim([0, 0, 1, 3, 4]),
            Ok(Dim([0, 0, 2, 3, 4])),
        );
        test_co(&Dim([0]), &Dim([0, 0, 0]), Ok(Dim([0, 0, 0])));
        test_co(&Dim(1), &Dim([1, 0, 0]), Ok(Dim([1, 0, 0])));
        test_co(
            &Dim([1, 3, 0, 1, 1]),
            &Dim([1, 2, 3, 1]),
            Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)),
        );
    }
}