1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::cmp;
use std::ptr as std_ptr;
use std::slice;

use itertools::zip;

use imp_prelude::*;

use arraytraits;
use dimension;
use iterators;
use error::{self, ShapeError, ErrorKind};
use super::zipsl;
use super::ZipExt;
use dimension::IntoDimension;
use dimension::{axes_of, Axes, merge_axes, stride_offset};
use iterators::{
    new_lanes,
    new_lanes_mut,
    exact_chunks_of,
    exact_chunks_mut_of,
    windows
};
use zip::Zip;

use {
    NdIndex,
};
use iter::{
    AxisChunksIter,
    AxisChunksIterMut,
    Iter,
    IterMut,
    IndexedIter,
    IndexedIterMut,
    Lanes,
    LanesMut,
    AxisIter,
    AxisIterMut,
    ExactChunks,
    ExactChunksMut,
    Windows
};
use stacking::stack;

/// # Methods For All Array Types
impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
{
    /// Return the total number of elements in the array.
    pub fn len(&self) -> usize {
        self.dim.size()
    }

    /// Return the length of `axis`.
    ///
    /// The axis should be in the range `Axis(` 0 .. *n* `)` where *n* is the
    /// number of dimensions (axes) of the array.
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn len_of(&self, axis: Axis) -> usize {
        self.dim[axis.index()]
    }

    /// Return whether the array has any elements
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the number of dimensions (axes) in the array
    pub fn ndim(&self) -> usize {
        self.dim.ndim()
    }

    /// Return the shape of the array in its “pattern” form,
    /// an integer in the one-dimensional case, tuple in the n-dimensional cases
    /// and so on.
    pub fn dim(&self) -> D::Pattern {
        self.dim.clone().into_pattern()
    }

    /// Return the shape of the array as it stored in the array.
    pub fn raw_dim(&self) -> D {
        self.dim.clone()
    }

    /// Return the shape of the array as a slice.
    pub fn shape(&self) -> &[Ix] {
        self.dim.slice()
    }

    /// Return the strides of the array as a slice
    pub fn strides(&self) -> &[Ixs] {
        let s = self.strides.slice();
        // reinterpret unsigned integer as signed
        unsafe {
            slice::from_raw_parts(s.as_ptr() as *const _, s.len())
        }
    }

    /// Return a read-only view of the array
    pub fn view(&self) -> ArrayView<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        unsafe {
            ArrayView::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return a read-write view of the array
    pub fn view_mut(&mut self) -> ArrayViewMut<A, D>
        where S: DataMut,
    {
        self.ensure_unique();
        unsafe {
            ArrayViewMut::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return an uniquely owned copy of the array
    pub fn to_owned(&self) -> Array<A, D>
        where A: Clone
    {
        if let Some(slc) = self.as_slice_memory_order() {
            unsafe {
                Array::from_shape_vec_unchecked(self.dim.clone()
                                                .strides(self.strides.clone()),
                                                slc.to_vec())
            }
        } else {
            self.map(|x| x.clone())
        }
    }

    /// Return a shared ownership (copy on write) array.
    pub fn to_shared(&self) -> RcArray<A, D>
        where A: Clone
    {
        // FIXME: Avoid copying if it’s already an RcArray.
        self.to_owned().into_shared()
    }

    /// Turn the array into a shared ownership (copy on write) array,
    /// without any copying.
    pub fn into_shared(self) -> RcArray<A, D>
        where S: DataOwned,
    {
        let data = self.data.into_shared();
        ArrayBase {
            data: data,
            ptr: self.ptr,
            dim: self.dim,
            strides: self.strides,
        }
    }

    /// Return an iterator of references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `&A`.
    pub fn iter(&self) -> Iter<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        self.view().into_iter_()
    }

    /// Return an iterator of mutable references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `&mut A`.
    pub fn iter_mut(&mut self) -> IterMut<A, D>
        where S: DataMut,
    {
        self.view_mut().into_iter_()
    }

    /// Return an iterator of indexes and references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `(D::Pattern, &A)`.
    ///
    /// See also [`Zip::indexed`](struct.Zip.html)
    pub fn indexed_iter(&self) -> IndexedIter<A, D> {
        IndexedIter::new(self.view().into_elements_base())
    }

    /// Return an iterator of indexes and mutable references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `(D::Pattern, &mut A)`.
    pub fn indexed_iter_mut(&mut self) -> IndexedIterMut<A, D>
        where S: DataMut,
    {
        IndexedIterMut::new(self.view_mut().into_elements_base())
    }


    /// Return a sliced array.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `indexes` does not match the number of array axes.)
    pub fn slice(&self, indexes: &D::SliceArg) -> ArrayView<A, D> {
        let mut arr = self.view();
        arr.islice(indexes);
        arr
    }

    /// Return a sliced read-write view of the array.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `indexes` does not match the number of array axes.)
    pub fn slice_mut(&mut self, indexes: &D::SliceArg) -> ArrayViewMut<A, D>
        where S: DataMut
    {
        let mut arr = self.view_mut();
        arr.islice(indexes);
        arr
    }

    /// Slice the array’s view in place.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `indexes` does not match the number of array axes.)
    pub fn islice(&mut self, indexes: &D::SliceArg) {
        let offset = D::do_slices(&mut self.dim, &mut self.strides, indexes);
        unsafe {
            self.ptr = self.ptr.offset(offset);
        }
        debug_assert!(self.pointer_is_inbounds());
    }



    /// Return a reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// Arrays also support indexing syntax: `array[index]`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    ///
    /// assert!(
    ///     a.get((0, 1)) == Some(&2.) &&
    ///     a.get((0, 2)) == None &&
    ///     a[(0, 1)] == 2. &&
    ///     a[[0, 1]] == 2.
    /// );
    /// ```
    pub fn get<I>(&self, index: I) -> Option<&A>
        where I: NdIndex<D>,
    {
        let ptr = self.ptr;
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &*ptr.offset(offset) })
    }

    /// Return a mutable reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut A>
        where S: DataMut,
              I: NdIndex<D>,
    {
        let ptr = self.as_mut_ptr();
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &mut *ptr.offset(offset) })
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a reference to the element at `index`.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.
    #[inline]
    pub unsafe fn uget<I>(&self, index: I) -> &A
        where I: NdIndex<D>,
    {
        arraytraits::debug_bounds_check(self, &index);
        let off = index.index_unchecked(&self.strides);
        &*self.ptr.offset(off)
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a mutable reference to the element at `index`.
    ///
    /// **Note:** Only unchecked for non-debug builds of ndarray.<br>
    /// **Note:** (For `RcArray`) The array must be uniquely held when mutating it.
    #[inline]
    pub unsafe fn uget_mut<I>(&mut self, index: I) -> &mut A
        where S: DataMut,
              I: NdIndex<D>,
    {
        debug_assert!(self.data.is_unique());
        arraytraits::debug_bounds_check(self, &index);
        let off = index.index_unchecked(&self.strides);
        &mut *self.ptr.offset(off)
    }

    /// Swap elements at indices `index1` and `index2`.
    ///
    /// Indices may be equal.
    ///
    /// ***Panics*** if an index is out of bounds.
    pub fn swap<I>(&mut self, index1: I, index2: I)
        where S: DataMut,
              I: NdIndex<D>,
    {
        let ptr1: *mut _ = &mut self[index1];
        let ptr2: *mut _ = &mut self[index2];
        unsafe {
            std_ptr::swap(ptr1, ptr2);
        }
    }

    /// Swap elements *unchecked* at indices `index1` and `index2`.
    ///
    /// Indices may be equal.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.<br>
    /// **Note:** (For `RcArray`) The array must be uniquely held.
    pub unsafe fn uswap<I>(&mut self, index1: I, index2: I)
        where S: DataMut,
              I: NdIndex<D>,
    {
        debug_assert!(self.data.is_unique());
        arraytraits::debug_bounds_check(self, &index1);
        arraytraits::debug_bounds_check(self, &index2);
        let off1 = index1.index_unchecked(&self.strides);
        let off2 = index2.index_unchecked(&self.strides);
        std_ptr::swap(self.ptr.offset(off1), self.ptr.offset(off2));
    }

    // `get` for zero-dimensional arrays
    // panics if dimension is not zero. otherwise an element is always present.
    fn get_0d(&self) -> &A {
        assert!(self.ndim() == 0);
        unsafe {
            &*self.as_ptr()
        }
    }

    /// Along `axis`, select the subview `index` and return a
    /// view with that axis removed.
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, ArrayView, Axis};
    ///
    /// let a = arr2(&[[1., 2. ],    // ... axis 0, row 0
    ///                [3., 4. ],    // --- axis 0, row 1
    ///                [5., 6. ]]);  // ... axis 0, row 2
    /// //               .   \
    /// //                .   axis 1, column 1
    /// //                 axis 1, column 0
    /// assert!(
    ///     a.subview(Axis(0), 1) == ArrayView::from(&[3., 4.]) &&
    ///     a.subview(Axis(1), 1) == ArrayView::from(&[2., 4., 6.])
    /// );
    /// ```
    pub fn subview(&self, axis: Axis, index: Ix) -> ArrayView<A, D::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_subview(axis, index)
    }

    /// Along `axis`, select the subview `index` and return a read-write view
    /// with the axis removed.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, aview2, Axis};
    ///
    /// let mut a = arr2(&[[1., 2. ],
    ///                    [3., 4. ]]);
    /// //                   .   \
    /// //                    .   axis 1, column 1
    /// //                     axis 1, column 0
    ///
    /// {
    ///     let mut column1 = a.subview_mut(Axis(1), 1);
    ///     column1 += 10.;
    /// }
    ///
    /// assert!(
    ///     a == aview2(&[[1., 12.],
    ///                   [3., 14.]])
    /// );
    /// ```
    pub fn subview_mut(&mut self, axis: Axis, index: Ix)
        -> ArrayViewMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_subview(axis, index)
    }

    /// Collapse dimension `axis` into length one,
    /// and select the subview of `index` along that axis.
    ///
    /// **Panics** if `index` is past the length of the axis.
    pub fn isubview(&mut self, axis: Axis, index: Ix) {
        dimension::do_sub(&mut self.dim, &mut self.ptr, &self.strides,
                          axis.index(), index)
    }

    /// Along `axis`, select the subview `index` and return `self`
    /// with that axis removed.
    ///
    /// See [`.subview()`](#method.subview) and [*Subviews*](#subviews) for full documentation.
    pub fn into_subview(mut self, axis: Axis, index: Ix) -> ArrayBase<S, D::Smaller>
        where D: RemoveAxis,
    {
        self.isubview(axis, index);
        self.remove_axis(axis)
    }

    /// Along `axis`, select arbitrary subviews corresponding to `indices`
    /// and and copy them into a new array.
    ///
    /// **Panics** if `axis` or an element of `indices` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, Axis};
    ///
    /// let x = arr2(&[[0., 1.],
    ///                [2., 3.],
    ///                [4., 5.],
    ///                [6., 7.],
    ///                [8., 9.]]);
    ///
    /// let r = x.select(Axis(0), &[0, 4, 3]);
    /// assert!(
    ///         r == arr2(&[[0., 1.],
    ///                     [8., 9.],
    ///                     [6., 7.]])
    ///);
    /// ```
    pub fn select(&self, axis: Axis, indices: &[Ix]) -> Array<A, D>
        where A: Copy,
              D: RemoveAxis,
    {
        let mut subs = vec![self.view(); indices.len()];
        for (&i, sub) in zip(indices, &mut subs[..]) {
            sub.isubview(axis, i);
        }
        if subs.is_empty() {
            let mut dim = self.raw_dim();
            dim.set_axis(axis, 0);
            unsafe {
                Array::from_shape_vec_unchecked(dim, vec![])
            }
        } else {
            stack(axis, &subs).unwrap()
        }
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// rows of the array. For a 2D array these are the regular rows.
    ///
    /// This is equivalent to `.lanes(Axis(n - 1))` where *n* is `self.ndim()`.
    ///
    /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m*
    /// it has *a* × *b* × *c* × ... × *l* rows each of length *m*.
    ///
    /// For example, in a 2 × 2 × 3 array, each row is 3 elements long
    /// and there are 2 × 2 = 4 rows in total.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::{arr3, Axis, arr1};
    ///
    /// let a = arr3(&[[[ 0,  1,  2],    // -- row 0, 0
    ///                 [ 3,  4,  5]],   // -- row 0, 1
    ///                [[ 6,  7,  8],    // -- row 1, 0
    ///                 [ 9, 10, 11]]]); // -- row 1, 1
    ///
    /// // `genrows` will yield the four generalized rows of the array.
    /// for row in a.genrows() {
    ///     /* loop body */
    /// }
    /// ```
    pub fn genrows(&self) -> Lanes<A, D::Smaller> {
        let mut n = self.ndim();
        if n == 0 { n += 1; }
        new_lanes(self.view(), Axis(n - 1))
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// rows of the array and yields mutable array views.
    ///
    /// Iterator element is `ArrayView1<A>` (1D read-write array view).
    pub fn genrows_mut(&mut self) -> LanesMut<A, D::Smaller>
        where S: DataMut
    {
        let mut n = self.ndim();
        if n == 0 { n += 1; }
        new_lanes_mut(self.view_mut(), Axis(n - 1))
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array. For a 2D array these are the regular columns.
    ///
    /// This is equivalent to `.lanes(Axis(0))`.
    ///
    /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m*
    /// it has *b* × *c* × ... × *l* × *m* columns each of length *a*.
    ///
    /// For example, in a 2 × 2 × 3 array, each column is 2 elements long
    /// and there are 2 × 3 = 6 columns in total.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::{arr3, Axis, arr1};
    ///
    /// // The generalized columns of a 3D array:
    /// // are directed along the 0th axis: 0 and 6, 1 and 7 and so on...
    /// let a = arr3(&[[[ 0,  1,  2], [ 3,  4,  5]],
    ///                [[ 6,  7,  8], [ 9, 10, 11]]]);
    ///
    /// // Here `gencolumns` will yield the six generalized columns of the array.
    /// for row in a.gencolumns() {
    ///     /* loop body */
    /// }
    /// ```
    pub fn gencolumns(&self) -> Lanes<A, D::Smaller> {
        new_lanes(self.view(), Axis(0))
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array and yields mutable array views.
    ///
    /// Iterator element is `ArrayView1<A>` (1D read-write array view).
    pub fn gencolumns_mut(&mut self) -> LanesMut<A, D::Smaller>
        where S: DataMut
    {
        new_lanes_mut(self.view_mut(), Axis(0))
    }

    /// Return a producer and iterable that traverses over all 1D lanes
    /// pointing in the direction of `axis`.
    ///
    /// When the pointing in the direction of the first axis, they are *columns*,
    /// in the direction of the last axis *rows*; in general they are all
    /// *lanes* and are one dimensional.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::{arr3, aview1, Axis};
    ///
    /// let a = arr3(&[[[ 0,  1,  2],
    ///                 [ 3,  4,  5]],
    ///                [[ 6,  7,  8],
    ///                 [ 9, 10, 11]]]);
    ///
    /// let inner0 = a.lanes(Axis(0));
    /// let inner1 = a.lanes(Axis(1));
    /// let inner2 = a.lanes(Axis(2));
    ///
    /// // The first lane for axis 0 is [0, 6]
    /// assert_eq!(inner0.into_iter().next().unwrap(), aview1(&[0, 6]));
    /// // The first lane for axis 1 is [0, 3]
    /// assert_eq!(inner1.into_iter().next().unwrap(), aview1(&[0, 3]));
    /// // The first lane for axis 2 is [0, 1, 2]
    /// assert_eq!(inner2.into_iter().next().unwrap(), aview1(&[0, 1, 2]));
    /// ```
    pub fn lanes(&self, axis: Axis) -> Lanes<A, D::Smaller> {
        new_lanes(self.view(), axis)
    }

    /// Return a producer and iterable that traverses over all 1D lanes
    /// pointing in the direction of `axis`.
    ///
    /// Iterator element is `ArrayViewMut1<A>` (1D read-write array view).
    pub fn lanes_mut(&mut self, axis: Axis) -> LanesMut<A, D::Smaller>
        where S: DataMut
    {
        new_lanes_mut(self.view_mut(), axis)
    }


    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// This is equivalent to `.axis_iter(Axis(0))`.
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    #[allow(deprecated)]
    pub fn outer_iter(&self) -> AxisIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_outer_iter()
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// This is equivalent to `.axis_iter_mut(Axis(0))`.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>` (read-write array view).
    #[allow(deprecated)]
    pub fn outer_iter_mut(&mut self) -> AxisIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_outer_iter()
    }

    /// Return an iterator that traverses over `axis`
    /// and yields each subview along it.
    ///
    /// For example, in a 3 × 4 × 5 array, with `axis` equal to `Axis(2)`,
    /// the iterator element
    /// is a 3 × 4 subview (and there are 5 in total), as shown
    /// in the picture below.
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// <img src="https://bluss.github.io/ndarray/images/axis_iter_3_4_5.svg" height="250px">
    pub fn axis_iter(&self, axis: Axis) -> AxisIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        iterators::new_axis_iter(self.view(), axis.index())
    }


    /// Return an iterator that traverses over `axis`
    /// and yields each mutable subview along it.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>`
    /// (read-write array view).
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_iter_mut(&mut self, axis: Axis) -> AxisIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        iterators::new_axis_iter_mut(self.view_mut(), axis.index())
    }


    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping views along that axis.
    ///
    /// Iterator element is `ArrayView<A, D>`
    ///
    /// The last view may have less elements if `size` does not divide
    /// the axis' dimension.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// ```
    /// use ndarray::Array;
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = Array::from_iter(0..28).into_shape((2, 7, 2)).unwrap();
    /// let mut iter = a.axis_chunks_iter(Axis(1), 2);
    ///
    /// // first iteration yields a 2 × 2 × 2 view
    /// assert_eq!(iter.next().unwrap(),
    ///            arr3(&[[[ 0,  1], [ 2, 3]],
    ///                   [[14, 15], [16, 17]]]));
    ///
    /// // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1
    /// assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]],
    ///                                              [[26, 27]]]));
    /// ```
    pub fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<A, D> {
        iterators::new_chunk_iter(self.view(), axis.index(), size)
    }

    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping read-write views along that axis.
    ///
    /// Iterator element is `ArrayViewMut<A, D>`
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize)
        -> AxisChunksIterMut<A, D>
        where S: DataMut
    {
        iterators::new_chunk_iter_mut(self.view_mut(), axis.index(), size)
    }

    /// Return an exact chunks producer (and iterable).
    ///
    /// It produces the whole chunks of a given n-dimensional chunk size,
    /// skipping the remainder along each dimension that doesn't fit evenly.
    ///
    /// The produced element is a `ArrayView<A, D>` with exactly the dimension
    /// `chunk_size`.
    ///
    /// **Panics** if any dimension of `chunk_size` is zero<br>
    /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the
    /// number of array axes.)
    pub fn exact_chunks<E>(&self, chunk_size: E) -> ExactChunks<A, D> 
        where E: IntoDimension<Dim=D>,
    {
        exact_chunks_of(self.view(), chunk_size)
    }

    #[doc(hidden)]
    #[deprecated(note="Renamed to exact_chunks")]
    pub fn whole_chunks<E>(&self, chunk_size: E) -> ExactChunks<A, D> 
        where E: IntoDimension<Dim=D>,
    {
        self.exact_chunks(chunk_size)
    }

    /// Return an exact chunks producer (and iterable).
    ///
    /// It produces the whole chunks of a given n-dimensional chunk size,
    /// skipping the remainder along each dimension that doesn't fit evenly.
    ///
    /// The produced element is a `ArrayViewMut<A, D>` with exactly
    /// the dimension `chunk_size`.
    ///
    /// **Panics** if any dimension of `chunk_size` is zero<br>
    /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the
    /// number of array axes.)
    ///
    /// ```rust
    /// use ndarray::Array;
    /// use ndarray::arr2;
    /// let mut a = Array::zeros((6, 7));
    ///
    /// // Fill each 2 × 2 chunk with the index of where it appeared in iteration
    /// for (i, mut chunk) in a.exact_chunks_mut((2, 2)).into_iter().enumerate() {
    ///     chunk.fill(i);
    /// }
    ///
    /// // The resulting array is:
    /// assert_eq!(
    ///   a,
    ///   arr2(&[[0, 0, 1, 1, 2, 2, 0],
    ///          [0, 0, 1, 1, 2, 2, 0],
    ///          [3, 3, 4, 4, 5, 5, 0],
    ///          [3, 3, 4, 4, 5, 5, 0],
    ///          [6, 6, 7, 7, 8, 8, 0],
    ///          [6, 6, 7, 7, 8, 8, 0]]));
    /// ```
    pub fn exact_chunks_mut<E>(&mut self, chunk_size: E) -> ExactChunksMut<A, D> 
        where E: IntoDimension<Dim=D>,
              S: DataMut
    {
        exact_chunks_mut_of(self.view_mut(), chunk_size)
    }

    #[doc(hidden)]
    #[deprecated(note="Renamed to exact_chunks_mut")]
    pub fn whole_chunks_mut<E>(&mut self, chunk_size: E) -> ExactChunksMut<A, D> 
        where E: IntoDimension<Dim=D>,
              S: DataMut
    {
        self.exact_chunks_mut(chunk_size)
    }

    /// Return a window producer and iterable.
    ///
    /// The windows are all distinct overlapping views of size `window_size`
    /// that fit into the array's shape.
    /// 
    /// Will yield over no elements if window size is larger
    /// than the actual array size of any dimension.
    ///
    /// The produced element is an `ArrayView<A, D>` with exactly the dimension
    /// `window_size`.
    /// 
    /// **Panics** if any dimension of `window_size` is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `window_size` does not match the
    /// number of array axes.)
    pub fn windows<E>(&self, window_size: E) -> Windows<A, D>
        where E: IntoDimension<Dim=D>
    {
        windows(self.view(), window_size)
    }

    // Return (length, stride) for diagonal
    fn diag_params(&self) -> (Ix, Ixs) {
        /* empty shape has len 1 */
        let len = self.dim.slice().iter().cloned().min().unwrap_or(1);
        let stride = self.strides()
                         .iter()
                         .fold(0, |sum, s| sum + s);
        (len, stride)
    }

    /// Return an view of the diagonal elements of the array.
    ///
    /// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*,
    /// *(1, 1, ..., 1)* etc as long as all axes have elements.
    pub fn diag(&self) -> ArrayView1<A> {
        self.view().into_diag()
    }

    /// Return a read-write view over the diagonal elements of the array.
    pub fn diag_mut(&mut self) -> ArrayViewMut1<A>
        where S: DataMut,
    {
        self.view_mut().into_diag()
    }

    /// Return the diagonal as a one-dimensional array.
    pub fn into_diag(self) -> ArrayBase<S, Ix1> {
        let (len, stride) = self.diag_params();
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: Ix1(len),
            strides: Ix1(stride as Ix),
        }
    }

    /// Make the array unshared.
    ///
    /// This method is mostly only useful with unsafe code.
    fn ensure_unique(&mut self)
        where S: DataMut
    {
        debug_assert!(self.pointer_is_inbounds());
        S::ensure_unique(self);
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return `true` if the array data is laid out in contiguous “C order” in
    /// memory (where the last index is the most rapidly varying).
    ///
    /// Return `false` otherwise, i.e the array is possibly not
    /// contiguous in memory, it has custom strides, etc.
    pub fn is_standard_layout(&self) -> bool {
        fn is_standard_layout<D: Dimension>(dim: &D, strides: &D) -> bool {
            let defaults = dim.default_strides();
            if strides.equal(&defaults) {
                return true;
            }
            if dim.ndim() == 1 { return false; }
            // check all dimensions -- a dimension of length 1 can have unequal strides
            for (&dim, &s, &ds) in zipsl(dim.slice(), strides.slice())
                .zip_cons(defaults.slice())
            {
                if dim != 1 && s != ds {
                    return false;
                }
            }
            true
        }
        is_standard_layout(&self.dim, &self.strides)
    }

    fn is_contiguous(&self) -> bool {
        D::is_contiguous(&self.dim, &self.strides)
    }

    /// Return a pointer to the first element in the array.
    ///
    /// Raw access to array elements needs to follow the strided indexing
    /// scheme: an element at multi-index *I* in an array with strides *S* is
    /// located at offset
    ///
    /// *Σ<sub>0 ≤ k < d</sub> I<sub>k</sub> × S<sub>k</sub>*
    ///
    /// where *d* is `self.ndim()`.
    #[inline(always)]
    pub fn as_ptr(&self) -> *const A {
        self.ptr
    }

    /// Return a mutable pointer to the first element in the array.
    #[inline(always)]
    pub fn as_mut_ptr(&mut self) -> *mut A
        where S: DataMut
    {
        self.ensure_unique(); // for RcArray
        self.ptr
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the element order in the slice
    /// corresponds to the logical order of the array’s elements.
    pub fn as_slice(&self) -> Option<&[A]> {
        if self.is_standard_layout() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    pub fn as_slice_mut(&mut self) -> Option<&mut [A]>
        where S: DataMut
    {
        if self.is_standard_layout() {
            self.ensure_unique();
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the elements in the slice
    /// have whatever order the elements have in memory.
    ///
    /// Implementation notes: Does not yet support negatively strided arrays.
    pub fn as_slice_memory_order(&self) -> Option<&[A]> {
        if self.is_contiguous() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    pub fn as_slice_memory_order_mut(&mut self) -> Option<&mut [A]>
        where S: DataMut
    {
        if self.is_contiguous() {
            self.ensure_unique();
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted, but the source array or view must be
    /// contiguous, otherwise we cannot rearrange the dimension.
    ///
    /// **Errors** if the shapes don't have the same number of elements.<br>
    /// **Errors** if the input array is not c- or f-contiguous.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap()
    ///     == aview2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E::Dim>, ShapeError>
        where E: IntoDimension,
    {
        let shape = shape.into_dimension();
        if shape.size_checked() != Some(self.dim.size()) {
            return Err(error::incompatible_shapes(&self.dim, &shape));
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            Ok(ArrayBase {
                data: self.data,
                ptr: self.ptr,
                strides: shape.default_strides(),
                dim: shape,
            })
        } else if self.ndim() > 1 && self.view().reversed_axes().is_standard_layout() {
            Ok(ArrayBase {
                data: self.data,
                ptr: self.ptr,
                strides: shape.fortran_strides(),
                dim: shape,
            })
        } else {
            Err(error::from_kind(error::ErrorKind::IncompatibleLayout))
        }
    }

    /// *Note: Reshape is for `RcArray` only. Use `.into_shape()` for
    /// other arrays and array views.*
    ///
    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted.
    ///
    /// May clone all elements if needed to arrange elements in standard
    /// layout (and break sharing).
    ///
    /// **Panics** if shapes are incompatible.
    ///
    /// ```
    /// use ndarray::{rcarr1, rcarr2};
    ///
    /// assert!(
    ///     rcarr1(&[1., 2., 3., 4.]).reshape((2, 2))
    ///     == rcarr2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, E::Dim>
        where S: DataShared + DataOwned,
              A: Clone,
              E: IntoDimension,
    {
        let shape = shape.into_dimension();
        if shape.size_checked() != Some(self.dim.size()) {
            panic!("ndarray: incompatible shapes in reshape, attempted from: {:?}, to: {:?}",
                   self.dim.slice(),
                   shape.slice())
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            let cl = self.clone();
            ArrayBase {
                data: cl.data,
                ptr: cl.ptr,
                strides: shape.default_strides(),
                dim: shape,
            }
        } else {
            let v = self.iter().map(|x| x.clone()).collect::<Vec<A>>();
            unsafe {
                ArrayBase::from_shape_vec_unchecked(shape, v)
            }
        }
    }

    /// Convert any array or array view to a dynamic dimensional array or
    /// array view (respectively).
    ///
    /// ```
    /// use ndarray::{arr2, ArrayD};
    ///
    /// let array: ArrayD<i32> = arr2(&[[1, 2],
    ///                                 [3, 4]]).into_dyn();
    /// ```
    pub fn into_dyn(self) -> ArrayBase<S, IxDyn> {
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: self.dim.into_dyn(),
            strides: self.strides.into_dyn(),
        }
    }

    /// Convert an array or array view to another with the same type, but
    /// different dimensionality type. Errors if the dimensions don't agree.
    ///
    /// ```
    /// use ndarray::{ArrayD, Ix2, IxDyn};
    ///
    /// // Create a dynamic dimensionality array and convert it to an Array2
    /// // (Ix2 dimension type).
    ///
    /// let array = ArrayD::<f64>::zeros(IxDyn(&[10, 10]));
    ///
    /// assert!(array.into_dimensionality::<Ix2>().is_ok());
    /// ```
    pub fn into_dimensionality<D2>(self) -> Result<ArrayBase<S, D2>, ShapeError>
        where D2: Dimension
    {
        if let Some(dim) = D2::from_dimension(&self.dim) {
            if let Some(strides) = D2::from_dimension(&self.strides) {
                return Ok(ArrayBase {
                    data: self.data,
                    ptr: self.ptr,
                    dim: dim,
                    strides: strides,
                });
            }
        }
        Err(ShapeError::from_kind(ErrorKind::IncompatibleShape))
    }

    /// Act like a larger size and/or shape array by *broadcasting*
    /// into a larger shape, if possible.
    ///
    /// Return `None` if shapes can not be broadcast together.
    ///
    /// ***Background***
    ///
    ///  * Two axes are compatible if they are equal, or one of them is 1.
    ///  * In this instance, only the axes of the smaller side (self) can be 1.
    ///
    /// Compare axes beginning with the *last* axis of each shape.
    ///
    /// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4)
    /// because its axes are either equal or 1 (or missing);
    /// while (2, 2) can *not* be broadcast into (2, 4).
    ///
    /// The implementation creates a view with strides set to zero for the
    /// axes that are to be repeated.
    ///
    /// The broadcasting documentation for Numpy has more information.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 0.]).broadcast((10, 2)).unwrap()
    ///     == aview2(&[[1., 0.]; 10])
    /// );
    /// ```
    pub fn broadcast<E>(&self, dim: E) -> Option<ArrayView<A, E::Dim>>
        where E: IntoDimension
    {
        /// Return new stride when trying to grow `from` into shape `to`
        ///
        /// Broadcasting works by returning a "fake stride" where elements
        /// to repeat are in axes with 0 stride, so that several indexes point
        /// to the same element.
        ///
        /// **Note:** Cannot be used for mutable iterators, since repeating
        /// elements would create aliasing pointers.
        fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> {
            let mut new_stride = to.clone();
            // begin at the back (the least significant dimension)
            // size of the axis has to either agree or `from` has to be 1
            if to.ndim() < from.ndim() {
                return None;
            }

            {
                let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev();
                for ((er, es), dr) in from.slice().iter().rev()
                                        .zip(stride.slice().iter().rev())
                                        .zip(new_stride_iter.by_ref())
                {
                    /* update strides */
                    if *dr == *er {
                        /* keep stride */
                        *dr = *es;
                    } else if *er == 1 {
                        /* dead dimension, zero stride */
                        *dr = 0
                    } else {
                        return None;
                    }
                }

                /* set remaining strides to zero */
                for dr in new_stride_iter {
                    *dr = 0;
                }
            }
            Some(new_stride)
        }
        let dim = dim.into_dimension();

        // Note: zero strides are safe precisely because we return an read-only view
        let broadcast_strides = match upcast(&dim, &self.dim, &self.strides) {
            Some(st) => st,
            None => return None,
        };
        unsafe { Some(ArrayView::new_(self.ptr, dim, broadcast_strides)) }
    }

    /// Swap axes `ax` and `bx`.
    ///
    /// This does not move any data, it just adjusts the array’s dimensions
    /// and strides.
    ///
    /// **Panics** if the axes are out of bounds.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[1., 2., 3.]]);
    /// a.swap_axes(0, 1);
    /// assert!(
    ///     a == arr2(&[[1.], [2.], [3.]])
    /// );
    /// ```
    pub fn swap_axes(&mut self, ax: usize, bx: usize) {
        self.dim.slice_mut().swap(ax, bx);
        self.strides.slice_mut().swap(ax, bx);
    }

    /// Transpose the array by reversing axes.
    ///
    /// Transposition reverses the order of the axes (dimensions and strides)
    /// while retaining the same data.
    pub fn reversed_axes(mut self) -> ArrayBase<S, D> {
        self.dim.slice_mut().reverse();
        self.strides.slice_mut().reverse();
        self
    }

    /// Return a transposed view of the array.
    ///
    /// This is a shorthand for `self.view().reversed_axes()`.
    ///
    /// See also the more general methods `.reversed_axes()` and `.swap_axes()`.
    pub fn t(&self) -> ArrayView<A, D> {
        self.view().reversed_axes()
    }

    /// Return an iterator over the length and stride of each axis.
    pub fn axes(&self) -> Axes<D> {
        axes_of(&self.dim, &self.strides)
    }

    /*
    /// Return the axis with the least stride (by absolute value)
    pub fn min_stride_axis(&self) -> Axis {
        self.dim.min_stride_axis(&self.strides)
    }
    */

    /// Return the axis with the greatest stride (by absolute value),
    /// preferring axes with len > 1.
    pub fn max_stride_axis(&self) -> Axis {
        self.dim.max_stride_axis(&self.strides)
    }

    /// Reverse the stride of `axis`.
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn invert_axis(&mut self, axis: Axis) {
        unsafe {
            let s = self.strides.axis(axis) as Ixs;
            let m = self.dim.axis(axis);
            if m != 0 {
                self.ptr = self.ptr.offset(stride_offset(m - 1, s as Ix));
            }
            self.strides.set_axis(axis, (-s) as Ix);
        }
    }

    /// If possible, merge in the axis `take` to `into`.
    ///
    /// ```
    /// use ndarray::Array3;
    /// use ndarray::Axis;
    ///
    /// let mut a = Array3::<f64>::zeros((2, 3, 4));
    /// a.merge_axes(Axis(1), Axis(2));
    /// assert_eq!(a.shape(), &[2, 1, 12]);
    /// ```
    ///
    /// ***Panics*** if an axis is out of bounds.
    pub fn merge_axes(&mut self, take: Axis, into: Axis) -> bool {
        merge_axes(&mut self.dim, &mut self.strides, take, into)
    }

    /// Insert new array axis at `axis` and return the result.
    ///
    /// ```
    /// use ndarray::{Array3, Axis, arr1, arr2};
    ///
    /// // Convert a 1-D array into a row vector (2-D).
    /// let a = arr1(&[1, 2, 3]);
    /// let row = a.insert_axis(Axis(0));
    /// assert_eq!(row, arr2(&[[1, 2, 3]]));
    ///
    /// // Convert a 1-D array into a column vector (2-D).
    /// let b = arr1(&[1, 2, 3]);
    /// let col = b.insert_axis(Axis(1));
    /// assert_eq!(col, arr2(&[[1], [2], [3]]));
    ///
    /// // The new axis always has length 1.
    /// let b = Array3::<f64>::zeros((3, 4, 5));
    /// assert_eq!(b.insert_axis(Axis(2)).shape(), &[3, 4, 1, 5]);
    /// ```
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn insert_axis(self, axis: Axis) -> ArrayBase<S, D::Larger>
    {
        assert!(axis.index() <= self.ndim());
        let ArrayBase { ptr, data, dim, strides } = self;
        ArrayBase {
            ptr,
            data,
            dim: dim.insert_axis(axis),
            strides: strides.insert_axis(axis),
        }
    }

    /// Remove array axis `axis` and return the result.
    pub fn remove_axis(self, axis: Axis) -> ArrayBase<S, D::Smaller>
        where D: RemoveAxis,
    {
        assert!(self.ndim() != 0);
        let d = self.dim.remove_axis(axis);
        let s = self.strides.remove_axis(axis);
        ArrayBase {
            ptr: self.ptr,
            data: self.data,
            dim: d,
            strides: s,
        }
    }

    fn pointer_is_inbounds(&self) -> bool {
        let slc = self.data._data_slice();
        if slc.is_empty() {
            // special case for data-less views
            return true;
        }
        let ptr = slc.as_ptr() as *mut _;
        let end =  unsafe {
            ptr.offset(slc.len() as isize)
        };
        self.ptr >= ptr && self.ptr <= end
    }

    /// Perform an elementwise assigment to `self` from `rhs`.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    pub fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>)
        where S: DataMut,
              A: Clone,
              S2: Data<Elem=A>,
    {
        self.zip_mut_with(rhs, |x, y| *x = y.clone());
    }

    /// Perform an elementwise assigment to `self` from element `x`.
    pub fn fill(&mut self, x: A)
        where S: DataMut, A: Clone,
    {
        self.unordered_foreach_mut(move |elt| *elt = x.clone());
    }

    fn zip_mut_with_same_shape<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        if let Some(self_s) = self.as_slice_mut() {
            if let Some(rhs_s) = rhs.as_slice() {
                let len = cmp::min(self_s.len(), rhs_s.len());
                let s = &mut self_s[..len];
                let r = &rhs_s[..len];
                for i in 0..len {
                    f(&mut s[i], &r[i]);
                }
                return;
            }
        }
        // otherwise, fall back to the outer iter
        self.zip_mut_with_by_rows(rhs, f);
    }

    // zip two arrays where they have different layout or strides
    #[inline(always)]
    fn zip_mut_with_by_rows<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        debug_assert_ne!(self.ndim(), 0);

        // break the arrays up into their inner rows
        let n = self.ndim();
        let dim = self.raw_dim();
        Zip::from(new_lanes_mut(self.view_mut(), Axis(n - 1)))
            .and(new_lanes(rhs.broadcast_assume(dim), Axis(n - 1)))
            .apply(move |s_row, r_row| {
                Zip::from(s_row).and(r_row).apply(|a, b| f(a, b))
            });
    }


    fn zip_mut_with_elem<B, F>(&mut self, rhs_elem: &B, mut f: F)
        where S: DataMut,
              F: FnMut(&mut A, &B)
    {
        self.unordered_foreach_mut(move |elt| f(elt, rhs_elem));
    }

    /// Traverse two arrays in unspecified order, in lock step,
    /// calling the closure `f` on each element pair.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    #[inline]
    pub fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        if rhs.dim.ndim() == 0 {
            // Skip broadcast from 0-dim array
            self.zip_mut_with_elem(rhs.get_0d(), f);
        } else if self.dim.ndim() == rhs.dim.ndim() && self.shape() == rhs.shape() {
            self.zip_mut_with_same_shape(rhs, f);
        } else {
            let rhs_broadcast = rhs.broadcast_unwrap(self.raw_dim());
            self.zip_mut_with_by_rows(&rhs_broadcast, f);
        }
    }

    /// Traverse the array elements and apply a fold,
    /// returning the resulting value.
    ///
    /// Elements are visited in arbitrary order.
    pub fn fold<'a, F, B>(&'a self, init: B, f: F) -> B
        where F: FnMut(B, &'a A) -> B, A: 'a
    {
        if let Some(slc) = self.as_slice_memory_order() {
            slc.iter().fold(init, f)
        } else {
            let mut v = self.view();
            // put the narrowest axis at the last position
            if v.ndim() > 1 {
                let last = v.ndim() - 1;
                let narrow_axis = v.axes()
                                   .filter(|ax| ax.len() > 1)
                                   .min_by_key(|ax| ax.stride().abs())
                                   .map_or(last, |ax| ax.axis().index());
                v.swap_axes(last, narrow_axis);
            }
            v.into_elements_base().fold(init, f)
        }
    }

    /// Call `f` by reference on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.map(|x| *x >= 1.0)
    ///     == arr2(&[[false, true],
    ///               [false, true]])
    /// );
    /// ```
    pub fn map<'a, B, F>(&'a self, f: F) -> Array<B, D>
        where F: FnMut(&'a A) -> B,
              A: 'a,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            let v = ::iterators::to_vec_mapped(slc.iter(), f);
            unsafe {
                ArrayBase::from_shape_vec_unchecked(
                    self.dim.clone().strides(self.strides.clone()), v)
            }
        } else {
            let v = ::iterators::to_vec_mapped(self.iter(), f);
            unsafe {
                ArrayBase::from_shape_vec_unchecked(self.dim.clone(), v)
            }
        }
    }

    /// Call `f` by **v**alue on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.mapv(f32::abs) == arr2(&[[0., 1.],
    ///                                [1., 2.]])
    /// );
    /// ```
    pub fn mapv<B, F>(&self, f: F) -> Array<B, D>
        where F: Fn(A) -> B,
              A: Clone,
    {
        self.map(move |x| f(x.clone()))
    }

    /// Call `f` by **v**alue on each element, update the array with the new values
    /// and return it.
    ///
    /// Elements are visited in arbitrary order.
    pub fn mapv_into<F>(mut self, f: F) -> Self
        where S: DataMut,
              F: Fn(A) -> A,
              A: Clone,
    {
        self.mapv_inplace(f);
        self
    }

    /// Modify the array in place by calling `f` by mutable reference on each element.
    ///
    /// Elements are visited in arbitrary order.
    pub fn map_inplace<F>(&mut self, f: F)
        where S: DataMut,
              F: Fn(&mut A),
    {
        self.unordered_foreach_mut(f);
    }

    /// Modify the array in place by calling `f` by **v**alue on each element.
    /// The array is updated with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[ 0., 1.],
    ///                    [-1., 2.]]);
    /// a.mapv_inplace(f32::exp);
    /// assert!(
    ///     a.all_close(&arr2(&[[1.00000, 2.71828],
    ///                         [0.36788, 7.38906]]), 1e-5)
    /// );
    /// ```
    pub fn mapv_inplace<F>(&mut self, f: F)
        where S: DataMut,
              F: Fn(A) -> A,
              A: Clone,
    {
        self.unordered_foreach_mut(move |x| *x = f(x.clone()));
    }

    /// Visit each element in the array by calling `f` by reference
    /// on each element.
    ///
    /// Elements are visited in arbitrary order.
    pub fn visit<'a, F>(&'a self, mut f: F)
        where F: FnMut(&'a A),
              A: 'a,
    {
        self.fold((), move |(), elt| f(elt))
    }

    /// Fold along an axis.
    ///
    /// Combine the elements of each subview with the previous using the `fold`
    /// function and initial value `init`.
    ///
    /// Return the result as an `Array`.
    pub fn fold_axis<B, F>(&self, axis: Axis, init: B, mut fold: F)
        -> Array<B, D::Smaller>
        where D: RemoveAxis,
              F: FnMut(&B, &A) -> B,
              B: Clone,
    {
        let mut res = Array::from_elem(self.raw_dim().remove_axis(axis), init);
        for subview in self.axis_iter(axis) {
            res.zip_mut_with(&subview, |x, y| *x = fold(x, y));
        }
        res
    }

    /// Reduce the values along an axis into just one value, producing a new
    /// array with one less dimension.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return the result as an `Array`.
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn map_axis<'a, B, F>(&'a self, axis: Axis, mut mapping: F)
        -> Array<B, D::Smaller>
        where D: RemoveAxis,
              F: FnMut(ArrayView1<'a, A>) -> B,
              A: 'a,
    {
        let view_len = self.shape().axis(axis);
        let view_stride = self.strides.axis(axis);
        // use the 0th subview as a map to each 1d array view extended from
        // the 0th element.
        self.subview(axis, 0).map(|first_elt| {
            unsafe {
                mapping(ArrayView::new_(first_elt, Ix1(view_len), Ix1(view_stride)))
            }
        })
    }
}