1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
use draw::properties::spatial::{dimension, orientation, position};
use draw::properties::{
    ColorScalar, IntoDrawn, IntoRgba, Primitive, SetColor, SetDimensions, SetOrientation,
    SetPosition,
};
use draw::{self, Draw};
use geom::graph::node;
use geom::{self, Point2, Point3, Vector2, Vector3};
use math::{Angle, BaseFloat, Euler, Quaternion, Rad};
use std::marker::PhantomData;

/// A **Drawing** in progress.
///
/// **Drawing** provides a way of chaining together method calls describing properties of the thing
/// that we are drawing. **Drawing** ends when the instance is **Drop**ped, at which point the
/// properties of the drawing are inserted into the **Draw** type.
///
/// When a **Drawing** begins, a node is immediately created for the drawing within the **Draw**'s
/// inner **geom::Graph**. This ensures the correct instantiation order is maintained within the
/// graph. As a result, each **Drawing** is associated with a single, unique node. Thus a
/// **Drawing** can be thought of as a way of specifying properties for a node.
#[derive(Debug)]
pub struct Drawing<'a, T, S = geom::scalar::Default>
where
    T: IntoDrawn<S>,
    S: 'a + BaseFloat,
{
    // The `Draw` instance used to create this drawing.
    draw: &'a Draw<S>,
    // The `Index` of the node that was created.
    //
    // This may not be accessed by the user until drawing is complete. This is because the
    // **Drawing** may yet describe further positioning, orientation or scaling and in turn using
    // the index to refer to a node before these properties are set may yield unexpected behaviour.
    index: node::Index,
    // Whether or not the **Drawing** should attempt to finish the drawing on drop.
    finish_on_drop: bool,
    // The node type currently being drawn.
    _ty: PhantomData<T>,
}

/// Construct a new **Drawing** instance.
pub fn new<'a, T, S>(draw: &'a Draw<S>, index: node::Index) -> Drawing<'a, T, S>
where
    T: IntoDrawn<S>,
    S: BaseFloat,
{
    let _ty = PhantomData;
    let finish_on_drop = true;
    Drawing {
        draw,
        index,
        finish_on_drop,
        _ty,
    }
}

impl<'a, T, S> Drop for Drawing<'a, T, S>
where
    T: IntoDrawn<S>,
    S: BaseFloat,
{
    fn drop(&mut self) {
        if self.finish_on_drop {
            self.finish_inner().expect(
                "the drawing contained a relative edge that would have \
                 caused a cycle within the geometry graph",
            );
        }
    }
}

impl<'a, T, S> Drawing<'a, T, S>
where
    T: IntoDrawn<S>,
    S: BaseFloat,
{
    // Shared between the **finish** method and the **Drawing**'s **Drop** implementation.
    //
    // 1. Create vertices based on node-specific position, points, etc.
    // 2. Insert edges into geom graph based on
    fn finish_inner(&mut self) -> Result<(), geom::graph::WouldCycle<S>> {
        if let Ok(mut state) = self.draw.state.try_borrow_mut() {
            if let Some(prim) = state.drawing.remove(&self.index) {
                let index = self.index;
                draw::draw_primitive(&mut state, index, prim)?;
            }
        }
        Ok(())
    }

    /// Complete the drawing and insert it into the parent **Draw** instance.
    ///
    /// This will be called when the **Drawing** is **Drop**ped if it has not yet been called.
    pub fn finish(mut self) -> Result<(), geom::graph::WouldCycle<S>> {
        self.finish_inner()
    }

    /// Complete the drawing and return its unique identifier.
    ///
    /// **Panics** if adding the edge would cause a cycle in the graph.
    pub fn id(self) -> node::Index {
        let id = self.index;
        self.finish().expect(draw::WOULD_CYCLE);
        id
    }

    // Map the given function onto the primitive stored within **Draw** at `index`.
    //
    // The functionn is only applied if the node has not yet been **Drawn**.
    fn map_primitive<F, T2>(mut self, map: F) -> Drawing<'a, T2, S>
    where
        F: FnOnce(draw::properties::Primitive<S>) -> draw::properties::Primitive<S>,
        T2: IntoDrawn<S> + Into<Primitive<S>>,
    {
        if let Ok(mut state) = self.draw.state.try_borrow_mut() {
            if let Some(mut primitive) = state.drawing.remove(&self.index) {
                primitive = map(primitive);
                state.drawing.insert(self.index, primitive);
            }
        }
        self.finish_on_drop = false;
        let Drawing { draw, index, .. } = self;
        Drawing {
            draw,
            index,
            finish_on_drop: true,
            _ty: PhantomData,
        }
    }

    // The same as `map_primitive` but also passes a mutable reference to the vertex data to the
    // map function. This is useful for types that may have an unknown number of arbitrary
    // vertices.
    fn map_primitive_with_vertices<F, T2>(mut self, map: F) -> Drawing<'a, T2, S>
    where
        F: FnOnce(draw::properties::Primitive<S>, &mut draw::IntermediaryMesh<S>)
            -> draw::properties::Primitive<S>,
        T2: IntoDrawn<S> + Into<Primitive<S>>,
    {
        if let Ok(mut state) = self.draw.state.try_borrow_mut() {
            if let Some(mut primitive) = state.drawing.remove(&self.index) {
                {
                    let mut intermediary_mesh = state.intermediary_mesh.borrow_mut();
                    primitive = map(primitive, &mut *intermediary_mesh);
                }
                state.drawing.insert(self.index, primitive);
            }
        }
        self.finish_on_drop = false;
        let Drawing { draw, index, .. } = self;
        Drawing {
            draw,
            index,
            finish_on_drop: true,
            _ty: PhantomData,
        }
    }

    /// Apply the given function to the type stored within **Draw**.
    ///
    /// The function is only applied if the node has not yet been **Drawn**.
    ///
    /// **Panics** if the primitive does not contain type **T**.
    pub fn map_ty<F, T2>(self, map: F) -> Drawing<'a, T2, S>
    where
        F: FnOnce(T) -> T2,
        T2: IntoDrawn<S> + Into<Primitive<S>>,
        Primitive<S>: Into<Option<T>>,
    {
        self.map_primitive(|prim| {
            let maybe_ty: Option<T> = prim.into();
            let ty = maybe_ty.expect("expected `T` but primitive contained different type");
            let ty2 = map(ty);
            ty2.into()
        })
    }

    /// Apply the given function to the type stored within **Draw**.
    ///
    /// The function is only applied if the node has not yet been **Drawn**.
    ///
    /// **Panics** if the primitive does not contain type **T**.
    pub(crate) fn map_ty_with_vertices<F, T2>(self, map: F) -> Drawing<'a, T2, S>
    where
        F: FnOnce(T, &mut draw::IntermediaryMesh<S>) -> T2,
        T2: IntoDrawn<S> + Into<Primitive<S>>,
        Primitive<S>: Into<Option<T>>,
    {
        self.map_primitive_with_vertices(|prim, v_data| {
            let maybe_ty: Option<T> = prim.into();
            let ty = maybe_ty.expect("expected `T` but primitive contained different type");
            let ty2 = map(ty, v_data);
            ty2.into()
        })
    }
}

// SetColor implementations.

impl<'a, T, S> Drawing<'a, T, S>
where
    T: IntoDrawn<S> + SetColor<ColorScalar> + Into<Primitive<S>>,
    Primitive<S>: Into<Option<T>>,
    S: BaseFloat,
{
    /// Specify a color.
    ///
    /// This method supports any color type that can be converted into RGBA.
    ///
    /// Colors that have no alpha channel will be given an opaque alpha channel value `1.0`.
    pub fn color<C>(self, color: C) -> Self
    where
        C: IntoRgba<ColorScalar>,
    {
        self.map_ty(|ty| SetColor::color(ty, color))
    }

    /// Specify the color via red, green and blue channels.
    pub fn rgb(self, r: ColorScalar, g: ColorScalar, b: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::rgb(ty, r, g, b))
    }

    /// Specify the color via red, green, blue and alpha channels.
    pub fn rgba(self, r: ColorScalar, g: ColorScalar, b: ColorScalar, a: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::rgba(ty, r, g, b, a))
    }

    /// Specify the color via hue, saturation and luminance.
    ///
    /// If you're looking for HSVA or HSBA, use the `hsva` method instead.
    ///
    /// The given hue expects a value between `0.0` and `1.0` where `0.0` is 0 degress and `1.0` is
    /// 360 degrees (or 2 PI radians).
    ///
    /// See the [wikipedia entry](https://en.wikipedia.org/wiki/HSL_and_HSV) for more details on
    /// this color space.
    pub fn hsl(self, h: ColorScalar, s: ColorScalar, l: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::hsl(ty, h, s, l))
    }

    /// Specify the color via hue, saturation, luminance and an alpha channel.
    ///
    /// If you're looking for HSVA or HSBA, use the `hsva` method instead.
    ///
    /// The given hue expects a value between `0.0` and `1.0` where `0.0` is 0 degress and `1.0` is
    /// 360 degrees (or 2 PI radians).
    ///
    /// See the [wikipedia entry](https://en.wikipedia.org/wiki/HSL_and_HSV) for more details on
    /// this color space.
    pub fn hsla(self, h: ColorScalar, s: ColorScalar, l: ColorScalar, a: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::hsla(ty, h, s, l, a))
    }

    /// Specify the color via hue, saturation and *value* (brightness).
    ///
    /// This is sometimes also known as "hsb".
    ///
    /// The given hue expects a value between `0.0` and `1.0` where `0.0` is 0 degress and `1.0` is
    /// 360 degrees (or 2 PI radians).
    ///
    /// See the [wikipedia entry](https://en.wikipedia.org/wiki/HSL_and_HSV) for more details on
    /// this color space.
    pub fn hsv(self, h: ColorScalar, s: ColorScalar, v: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::hsv(ty, h, s, v))
    }

    /// Specify the color via hue, saturation, *value* (brightness) and an alpha channel.
    ///
    /// This is sometimes also known as "hsba".
    ///
    /// The given hue expects a value between `0.0` and `1.0` where `0.0` is 0 degress and `1.0` is
    /// 360 degrees (or 2 PI radians).
    ///
    /// See the [wikipedia entry](https://en.wikipedia.org/wiki/HSL_and_HSV) for more details on
    /// this color space.
    pub fn hsva(self, h: ColorScalar, s: ColorScalar, v: ColorScalar, a: ColorScalar) -> Self {
        self.map_ty(|ty| SetColor::hsva(ty, h, s, v, a))
    }
}

// SetDimensions implementations.

impl<'a, T, S> Drawing<'a, T, S>
where
    T: IntoDrawn<S> + SetDimensions<S> + Into<Primitive<S>>,
    Primitive<S>: Into<Option<T>>,
    S: BaseFloat,
{
    // Setters for each axis.

    /// Set the length along the x axis.
    pub fn x_dimension(self, x: dimension::Dimension<S>) -> Self {
        self.map_ty(|ty| SetDimensions::x_dimension(ty, x))
    }

    /// Set the length along the y axis.
    pub fn y_dimension(self, y: dimension::Dimension<S>) -> Self {
        self.map_ty(|ty| SetDimensions::y_dimension(ty, y))
    }

    /// Set the length along the z axis.
    pub fn z_dimension(self, z: dimension::Dimension<S>) -> Self {
        self.map_ty(|ty| SetDimensions::z_dimension(ty, z))
    }

    // Absolute dimensions.

    /// Set the absolute width for the node.
    pub fn width(self, w: S) -> Self {
        self.map_ty(|ty| SetDimensions::width(ty, w))
    }

    /// Set the absolute height for the node.
    pub fn height(self, h: S) -> Self {
        self.map_ty(|ty| SetDimensions::height(ty, h))
    }

    /// Set the absolute depth for the node.
    pub fn depth(self, d: S) -> Self {
        self.map_ty(|ty| SetDimensions::depth(ty, d))
    }

    /// Short-hand for the **width** method.
    pub fn w(self, w: S) -> Self {
        self.map_ty(|ty| SetDimensions::w(ty, w))
    }

    /// Short-hand for the **height** method.
    pub fn h(self, h: S) -> Self {
        self.map_ty(|ty| SetDimensions::h(ty, h))
    }

    /// Short-hand for the **depth** method.
    pub fn d(self, d: S) -> Self {
        self.map_ty(|ty| SetDimensions::d(ty, d))
    }

    /// Set the **x** and **y** dimensions for the node.
    pub fn wh(self, v: Vector2<S>) -> Self {
        self.map_ty(|ty| SetDimensions::wh(ty, v))
    }

    /// Set the **x**, **y** and **z** dimensions for the node.
    pub fn whd(self, v: Vector3<S>) -> Self {
        self.map_ty(|ty| SetDimensions::whd(ty, v))
    }

    /// Set the width and height for the node.
    pub fn w_h(self, x: S, y: S) -> Self {
        self.map_ty(|ty| SetDimensions::w_h(ty, x, y))
    }

    /// Set the width and height for the node.
    pub fn w_h_d(self, x: S, y: S, z: S) -> Self {
        self.map_ty(|ty| SetDimensions::w_h_d(ty, x, y, z))
    }

    // Relative dimensions.

    /// Some relative dimension along the **x** axis.
    pub fn x_dimension_relative(self, other: node::Index, x: dimension::Relative<S>) -> Self {
        self.map_ty(|ty| SetDimensions::x_dimension_relative(ty, other, x))
    }

    /// Some relative dimension along the **y** axis.
    pub fn y_dimension_relative(self, other: node::Index, y: dimension::Relative<S>) -> Self {
        self.map_ty(|ty| SetDimensions::y_dimension_relative(ty, other, y))
    }

    /// Some relative dimension along the **z** axis.
    pub fn z_dimension_relative(self, other: node::Index, z: dimension::Relative<S>) -> Self {
        self.map_ty(|ty| SetDimensions::z_dimension_relative(ty, other, z))
    }

    /// Set the x-axis dimension as the width of the node at the given index.
    pub fn w_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetDimensions::w_of(ty, other))
    }

    /// Set the y-axis dimension as the height of the node at the given index.
    pub fn h_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetDimensions::h_of(ty, other))
    }

    /// Set the z-axis dimension as the depth of the node at the given index.
    pub fn d_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetDimensions::d_of(ty, other))
    }

    /// Set the dimensions as the dimensions of the node at the given index.
    pub fn wh_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetDimensions::wh_of(ty, other))
    }

    /// Set the dimensions as the dimensions of the node at the given index.
    pub fn whd_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetDimensions::whd_of(ty, other))
    }

    /// Set the width as the width of the node at the given index padded at both ends by the
    /// given Scalar.
    pub fn padded_w_of(self, other: node::Index, pad: S) -> Self {
        self.map_ty(|ty| SetDimensions::padded_w_of(ty, other, pad))
    }

    /// Set the height as the height of the node at the given index padded at both ends by the
    /// given Scalar.
    pub fn padded_h_of(self, other: node::Index, pad: S) -> Self {
        self.map_ty(|ty| SetDimensions::padded_h_of(ty, other, pad))
    }

    /// Set the depth as the depth of the node at the given index padded at both ends by the
    /// given Scalar.
    pub fn padded_d_of(self, other: node::Index, pad: S) -> Self {
        self.map_ty(|ty| SetDimensions::padded_d_of(ty, other, pad))
    }

    /// Set the dimensions as the dimensions of the node at the given index with each dimension
    /// padded by the given scalar.
    pub fn padded_wh_of(self, other: node::Index, pad: S) -> Self
    where
        S: Clone,
    {
        self.map_ty(|ty| SetDimensions::padded_wh_of(ty, other, pad))
    }

    /// Set the dimensions as the dimensions of the node at the given index with each dimension
    /// padded by the given scalar.
    pub fn padded_whd_of(self, other: node::Index, pad: S) -> Self
    where
        S: Clone,
    {
        self.map_ty(|ty| SetDimensions::padded_whd_of(ty, other, pad))
    }

    /// Set the width as the width of the node at the given index multiplied by the given **scale**
    /// Scalar value.
    pub fn scaled_w_of(self, other: node::Index, scale: S) -> Self {
        self.map_ty(|ty| SetDimensions::scaled_w_of(ty, other, scale))
    }

    /// Set the height as the height of the node at the given index multiplied by the given **scale**
    /// Scalar value.
    pub fn scaled_h_of(self, other: node::Index, scale: S) -> Self {
        self.map_ty(|ty| SetDimensions::scaled_h_of(ty, other, scale))
    }

    /// Set the depth as the depth of the node at the given index multiplied by the given **scale**
    /// Scalar value.
    pub fn scaled_d_of(self, other: node::Index, scale: S) -> Self {
        self.map_ty(|ty| SetDimensions::scaled_d_of(ty, other, scale))
    }

    /// Set the dimensions as the dimensions of the node at the given index multiplied by the given
    /// **scale** Scalar value.
    pub fn scaled_wh_of(self, other: node::Index, scale: S) -> Self
    where
        S: Clone,
    {
        self.map_ty(|ty| SetDimensions::scaled_wh_of(ty, other, scale))
    }

    /// Set the dimensions as the dimensions of the node at the given index multiplied by the given
    /// **scale** Scalar value.
    pub fn scaled_whd_of(self, other: node::Index, scale: S) -> Self
    where
        S: Clone,
    {
        self.map_ty(|ty| SetDimensions::scaled_whd_of(ty, other, scale))
    }
}

// SetPosition methods.

impl<'a, T, S> Drawing<'a, T, S>
where
    T: IntoDrawn<S> + SetPosition<S> + Into<Primitive<S>>,
    Primitive<S>: Into<Option<T>>,
    S: BaseFloat,
{
    /// Build with the given **Position** along the *x* axis.
    pub fn x_position(self, position: position::Position<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_position(ty, position))
    }

    /// Build with the given **Position** along the *y* axis.
    pub fn y_position(self, position: position::Position<S>) -> Self {
        self.map_ty(|ty| SetPosition::y_position(ty, position))
    }

    /// Build with the given **Position** along the *z* axis.
    pub fn z_position(self, position: position::Position<S>) -> Self {
        self.map_ty(|ty| SetPosition::z_position(ty, position))
    }

    // Absolute positioning.

    /// Build with the given **Absolute** **Position** along the *x* axis.
    pub fn x(self, x: S) -> Self {
        self.map_ty(|ty| SetPosition::x(ty, x))
    }

    /// Build with the given **Absolute** **Position** along the *y* axis.
    pub fn y(self, y: S) -> Self {
        self.map_ty(|ty| SetPosition::y(ty, y))
    }

    /// Build with the given **Absolute** **Position** along the *z* axis.
    pub fn z(self, z: S) -> Self {
        self.map_ty(|ty| SetPosition::z(ty, z))
    }

    /// Set the **Position** with some two-dimensional point.
    pub fn xy(self, p: Point2<S>) -> Self {
        self.map_ty(|ty| SetPosition::xy(ty, p))
    }

    /// Set the **Position** with some three-dimensional point.
    pub fn xyz(self, p: Point3<S>) -> Self {
        self.map_ty(|ty| SetPosition::xyz(ty, p))
    }

    /// Set the **Position** with *x* *y* coordinates.
    pub fn x_y(self, x: S, y: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y(ty, x, y))
    }

    /// Set the **Position** with *x* *y* *z* coordinates.
    pub fn x_y_z(self, x: S, y: S, z: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y_z(ty, x, y, z))
    }

    // Relative positioning.

    /// Set the *x* **Position** **Relative** to the previous node.
    pub fn x_position_relative(self, x: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_position_relative(ty, x))
    }

    /// Set the *y* **Position** **Relative** to the previous node.
    pub fn y_position_relative(self, y: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::y_position_relative(ty, y))
    }

    /// Set the *z* **Position** **Relative** to the previous node.
    pub fn z_position_relative(self, z: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::z_position_relative(ty, z))
    }

    /// Set the *x* and *y* **Position**s **Relative** to the previous node.
    pub fn x_y_position_relative(self, x: position::Relative<S>, y: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_y_position_relative(ty, x, y))
    }

    /// Set the *x*, *y* and *z* **Position**s **Relative** to the previous node.
    pub fn x_y_z_position_relative(
        self,
        x: position::Relative<S>,
        y: position::Relative<S>,
        z: position::Relative<S>,
    ) -> Self {
        self.map_ty(|ty| SetPosition::x_y_z_position_relative(ty, x, y, z))
    }

    /// Set the *x* **Position** **Relative** to the given node.
    pub fn x_position_relative_to(self, other: node::Index, x: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_position_relative_to(ty, other, x))
    }

    /// Set the *y* **Position** **Relative** to the given node.
    pub fn y_position_relative_to(self, other: node::Index, y: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::y_position_relative_to(ty, other, y))
    }

    /// Set the *y* **Position** **Relative** to the given node.
    pub fn z_position_relative_to(self, other: node::Index, z: position::Relative<S>) -> Self {
        self.map_ty(|ty| SetPosition::z_position_relative_to(ty, other, z))
    }

    /// Set the *x* and *y* **Position**s **Relative** to the given node.
    pub fn x_y_position_relative_to(
        self,
        other: node::Index,
        x: position::Relative<S>,
        y: position::Relative<S>,
    ) -> Self {
        self.map_ty(|ty| SetPosition::x_y_position_relative_to(ty, other, x, y))
    }

    /// Set the *x*, *y* and *z* **Position**s **Relative** to the given node.
    pub fn x_y_z_position_relative_to(
        self,
        other: node::Index,
        x: position::Relative<S>,
        y: position::Relative<S>,
        z: position::Relative<S>,
    ) -> Self {
        self.map_ty(|ty| SetPosition::x_y_z_position_relative_to(ty, other, x, y, z))
    }

    // Relative `Scalar` positioning.

    /// Set the **Position** as a **Scalar** along the *x* axis **Relative** to the middle of
    /// previous node.
    pub fn x_relative(self, x: S) -> Self {
        self.map_ty(|ty| SetPosition::x_relative(ty, x))
    }

    /// Set the **Position** as a **Scalar** along the *y* axis **Relative** to the middle of
    /// previous node.
    pub fn y_relative(self, y: S) -> Self {
        self.map_ty(|ty| SetPosition::y_relative(ty, y))
    }

    /// Set the **Position** as a **Scalar** along the *z* axis **Relative** to the middle of
    /// previous node.
    pub fn z_relative(self, z: S) -> Self {
        self.map_ty(|ty| SetPosition::z_relative(ty, z))
    }

    /// Set the **Position** as a **Point** **Relative** to the middle of the previous node.
    pub fn xy_relative(self, p: Point2<S>) -> Self {
        self.map_ty(|ty| SetPosition::xy_relative(ty, p))
    }

    /// Set the **Position** as a **Point** **Relative** to the middle of the previous node.
    pub fn xyz_relative(self, p: Point3<S>) -> Self {
        self.map_ty(|ty| SetPosition::xyz_relative(ty, p))
    }

    /// Set the **Position** as **Scalar**s along the *x* and *y* axes **Relative** to the middle
    /// of the previous node.
    pub fn x_y_relative(self, x: S, y: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y_relative(ty, x, y))
    }

    /// Set the **Position** as **Scalar**s along the *x*, *y* and *z* axes **Relative** to the
    /// middle of the previous node.
    pub fn x_y_z_relative(self, x: S, y: S, z: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y_z_relative(ty, x, y, z))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn x_relative_to(self, other: node::Index, x: S) -> Self {
        self.map_ty(|ty| SetPosition::x_relative_to(ty, other, x))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn y_relative_to(self, other: node::Index, y: S) -> Self {
        self.map_ty(|ty| SetPosition::y_relative_to(ty, other, y))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn z_relative_to(self, other: node::Index, z: S) -> Self {
        self.map_ty(|ty| SetPosition::z_relative_to(ty, other, z))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn xy_relative_to(self, other: node::Index, p: Point2<S>) -> Self {
        self.map_ty(|ty| SetPosition::xy_relative_to(ty, other, p))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn xyz_relative_to(self, other: node::Index, p: Point3<S>) -> Self {
        self.map_ty(|ty| SetPosition::xyz_relative_to(ty, other, p))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn x_y_relative_to(self, other: node::Index, x: S, y: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y_relative_to(ty, other, x, y))
    }

    /// Set the position relative to the node with the given node::Index.
    pub fn x_y_z_relative_to(self, other: node::Index, x: S, y: S, z: S) -> Self {
        self.map_ty(|ty| SetPosition::x_y_z_relative_to(ty, other, x, y, z))
    }

    // Directional positioning.

    /// Build with the **Position** along the *x* axis as some distance from another node.
    pub fn x_direction(self, direction: position::Direction, x: S) -> Self {
        self.map_ty(|ty| SetPosition::x_direction(ty, direction, x))
    }

    /// Build with the **Position** along the *y* axis as some distance from another node.
    pub fn y_direction(self, direction: position::Direction, y: S) -> Self {
        self.map_ty(|ty| SetPosition::y_direction(ty, direction, y))
    }

    /// Build with the **Position** along the *z* axis as some distance from another node.
    pub fn z_direction(self, direction: position::Direction, z: S) -> Self {
        self.map_ty(|ty| SetPosition::z_direction(ty, direction, z))
    }

    /// Build with the **Position** as some distance to the left of another node.
    pub fn left(self, x: S) -> Self {
        self.map_ty(|ty| SetPosition::left(ty, x))
    }

    /// Build with the **Position** as some distance to the right of another node.
    pub fn right(self, x: S) -> Self {
        self.map_ty(|ty| SetPosition::right(ty, x))
    }

    /// Build with the **Position** as some distance below another node.
    pub fn down(self, y: S) -> Self {
        self.map_ty(|ty| SetPosition::down(ty, y))
    }

    /// Build with the **Position** as some distance above another node.
    pub fn up(self, y: S) -> Self {
        self.map_ty(|ty| SetPosition::up(ty, y))
    }

    /// Build with the **Position** as some distance in front of another node.
    pub fn backwards(self, z: S) -> Self {
        self.map_ty(|ty| SetPosition::backwards(ty, z))
    }

    /// Build with the **Position** as some distance behind another node.
    pub fn forwards(self, z: S) -> Self {
        self.map_ty(|ty| SetPosition::forwards(ty, z))
    }

    /// Build with the **Position** along the *x* axis as some distance from the given node.
    pub fn x_direction_from(
        self,
        other: node::Index,
        direction: position::Direction,
        x: S,
    ) -> Self {
        self.map_ty(|ty| SetPosition::x_direction_from(ty, other, direction, x))
    }

    /// Build with the **Position** along the *y* axis as some distance from the given node.
    pub fn y_direction_from(
        self,
        other: node::Index,
        direction: position::Direction,
        y: S,
    ) -> Self {
        self.map_ty(|ty| SetPosition::y_direction_from(ty, other, direction, y))
    }

    /// Build with the **Position** along the *z* axis as some distance from the given node.
    pub fn z_direction_from(
        self,
        other: node::Index,
        direction: position::Direction,
        z: S,
    ) -> Self {
        self.map_ty(|ty| SetPosition::z_direction_from(ty, other, direction, z))
    }

    /// Build with the **Position** as some distance to the left of the given node.
    pub fn left_from(self, other: node::Index, x: S) -> Self {
        self.map_ty(|ty| SetPosition::left_from(ty, other, x))
    }

    /// Build with the **Position** as some distance to the right of the given node.
    pub fn right_from(self, other: node::Index, x: S) -> Self {
        self.map_ty(|ty| SetPosition::right_from(ty, other, x))
    }

    /// Build with the **Position** as some distance below the given node.
    pub fn down_from(self, other: node::Index, y: S) -> Self {
        self.map_ty(|ty| SetPosition::down_from(ty, other, y))
    }

    /// Build with the **Position** as some distance above the given node.
    pub fn up_from(self, other: node::Index, y: S) -> Self {
        self.map_ty(|ty| SetPosition::up_from(ty, other, y))
    }

    /// Build with the **Position** as some distance in front of the given node.
    pub fn backwards_from(self, other: node::Index, z: S) -> Self {
        self.map_ty(|ty| SetPosition::backwards_from(ty, other, z))
    }

    /// Build with the **Position** as some distance above the given node.
    pub fn forwards_from(self, other: node::Index, z: S) -> Self {
        self.map_ty(|ty| SetPosition::forwards_from(ty, other, z))
    }

    // Alignment positioning.

    /// Align the **Position** of the node along the *x* axis.
    pub fn x_align(self, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_align(ty, align))
    }

    /// Align the **Position** of the node along the *y* axis.
    pub fn y_align(self, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::y_align(ty, align))
    }

    /// Align the **Position** of the node along the *z* axis.
    pub fn z_align(self, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::z_align(ty, align))
    }

    /// Align the position to the left.
    pub fn align_left(self) -> Self {
        self.map_ty(|ty| SetPosition::align_left(ty))
    }

    /// Align the position to the left.
    pub fn align_left_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_left_with_margin(ty, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_x(self) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_x(ty))
    }

    /// Align the position to the right.
    pub fn align_right(self) -> Self {
        self.map_ty(|ty| SetPosition::align_right(ty))
    }

    /// Align the position to the right.
    pub fn align_right_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_right_with_margin(ty, margin))
    }

    /// Align the position to the bottom.
    pub fn align_bottom(self) -> Self {
        self.map_ty(|ty| SetPosition::align_bottom(ty))
    }

    /// Align the position to the bottom.
    pub fn align_bottom_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_bottom_with_margin(ty, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_y(self) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_y(ty))
    }

    /// Align the position to the top.
    pub fn align_top(self) -> Self {
        self.map_ty(|ty| SetPosition::align_top(ty))
    }

    /// Align the position to the top.
    pub fn align_top_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_top_with_margin(ty, margin))
    }

    /// Align the position to the front.
    pub fn align_front(self) -> Self {
        self.map_ty(|ty| SetPosition::align_front(ty))
    }

    /// Align the position to the front.
    pub fn align_front_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_front_with_margin(ty, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_z(self) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_z(ty))
    }

    /// Align the position to the back.
    pub fn align_back(self) -> Self {
        self.map_ty(|ty| SetPosition::align_back(ty))
    }

    /// Align the position to the back.
    pub fn align_back_with_margin(self, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_back_with_margin(ty, margin))
    }

    /// Align the **Position** of the node with the given node along the *x* axis.
    pub fn x_align_to(self, other: node::Index, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::x_align_to(ty, other, align))
    }

    /// Align the **Position** of the node with the given node along the *y* axis.
    pub fn y_align_to(self, other: node::Index, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::y_align_to(ty, other, align))
    }

    /// Align the **Position** of the node with the given node along the *z* axis.
    pub fn z_align_to(self, other: node::Index, align: position::Align<S>) -> Self {
        self.map_ty(|ty| SetPosition::z_align_to(ty, other, align))
    }

    /// Align the position to the left.
    pub fn align_left_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_left_of(ty, other))
    }

    /// Align the position to the left.
    pub fn align_left_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_left_of_with_margin(ty, other, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_x_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_x_of(ty, other))
    }

    /// Align the position to the right.
    pub fn align_right_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_right_of(ty, other))
    }

    /// Align the position to the right.
    pub fn align_right_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_right_of_with_margin(ty, other, margin))
    }

    /// Align the position to the bottom.
    pub fn align_bottom_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_bottom_of(ty, other))
    }

    /// Align the position to the bottom.
    pub fn align_bottom_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_bottom_of_with_margin(ty, other, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_y_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_y_of(ty, other))
    }

    /// Align the position to the top.
    pub fn align_top_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_top_of(ty, other))
    }

    /// Align the position to the top.
    pub fn align_top_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_top_of_with_margin(ty, other, margin))
    }

    /// Align the position to the front.
    pub fn align_front_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_front_of(ty, other))
    }

    /// Align the position to the front.
    pub fn align_front_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_front_of_with_margin(ty, other, margin))
    }

    /// Align the position to the middle.
    pub fn align_middle_z_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_middle_z_of(ty, other))
    }

    /// Align the position to the back.
    pub fn align_back_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::align_back_of(ty, other))
    }

    /// Align the position to the back.
    pub fn align_back_of_with_margin(self, other: node::Index, margin: S) -> Self {
        self.map_ty(|ty| SetPosition::align_back_of_with_margin(ty, other, margin))
    }

    // Alignment combinations.

    /// Align the node to the middle of the last node.
    pub fn middle(self) -> Self {
        self.map_ty(|ty| SetPosition::middle(ty))
    }

    /// Align the node to the bottom left of the last node.
    pub fn bottom_left(self) -> Self {
        self.map_ty(|ty| SetPosition::bottom_left(ty))
    }

    /// Align the node to the middle left of the last node.
    pub fn mid_left(self) -> Self {
        self.map_ty(|ty| SetPosition::mid_left(ty))
    }

    /// Align the node to the top left of the last node.
    pub fn top_left(self) -> Self {
        self.map_ty(|ty| SetPosition::top_left(ty))
    }

    /// Align the node to the middle top of the last node.
    pub fn mid_top(self) -> Self {
        self.map_ty(|ty| SetPosition::mid_top(ty))
    }

    /// Align the node to the top right of the last node.
    pub fn top_right(self) -> Self {
        self.map_ty(|ty| SetPosition::top_right(ty))
    }

    /// Align the node to the middle right of the last node.
    pub fn mid_right(self) -> Self {
        self.map_ty(|ty| SetPosition::mid_right(ty))
    }

    /// Align the node to the bottom right of the last node.
    pub fn bottom_right(self) -> Self {
        self.map_ty(|ty| SetPosition::bottom_right(ty))
    }

    /// Align the node to the middle bottom of the last node.
    pub fn mid_bottom(self) -> Self {
        self.map_ty(|ty| SetPosition::mid_bottom(ty))
    }

    /// Align the node in the middle of the given Node.
    pub fn middle_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::middle_of(ty, other))
    }

    /// Align the node to the bottom left of the given Node.
    pub fn bottom_left_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::bottom_left_of(ty, other))
    }

    /// Align the node to the middle left of the given Node.
    pub fn mid_left_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::mid_left_of(ty, other))
    }

    /// Align the node to the top left of the given Node.
    pub fn top_left_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::top_left_of(ty, other))
    }

    /// Align the node to the middle top of the given Node.
    pub fn mid_top_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::mid_top_of(ty, other))
    }

    /// Align the node to the top right of the given Node.
    pub fn top_right_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::top_right_of(ty, other))
    }

    /// Align the node to the middle right of the given Node.
    pub fn mid_right_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::mid_right_of(ty, other))
    }

    /// Align the node to the bottom right of the given Node.
    pub fn bottom_right_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::bottom_right_of(ty, other))
    }

    /// Align the node to the middle bottom of the given Node.
    pub fn mid_bottom_of(self, other: node::Index) -> Self {
        self.map_ty(|ty| SetPosition::mid_bottom_of(ty, other))
    }
}

// SetOrientation methods.

impl<'a, T, S> Drawing<'a, T, S>
where
    T: IntoDrawn<S> + SetOrientation<S> + Into<Primitive<S>>,
    Primitive<S>: Into<Option<T>>,
    S: BaseFloat,
{
    /// Describe orientation via the vector that points to the given target.
    pub fn look_at(self, target: orientation::LookAt<S>) -> Self {
        self.map_ty(|ty| SetOrientation::look_at(ty, target))
    }

    /// Describe orientation via the vector that points to the given node.
    pub fn look_at_node(self, node: node::Index) -> Self {
        self.map_ty(|ty| SetOrientation::look_at_node(ty, node))
    }

    /// Describe orientation via the vector that points to the given point.
    pub fn look_at_point(self, point: Point3<S>) -> Self {
        self.map_ty(|ty| SetOrientation::look_at_point(ty, point))
    }

    /// Build with the given **Orientation** along the *x* axis.
    pub fn x_orientation(self, orientation: orientation::Orientation<S>) -> Self {
        self.map_ty(|ty| SetOrientation::x_orientation(ty, orientation))
    }

    /// Build with the given **Orientation** along the *y* axis.
    pub fn y_orientation(self, orientation: orientation::Orientation<S>) -> Self {
        self.map_ty(|ty| SetOrientation::y_orientation(ty, orientation))
    }

    /// Build with the given **Orientation** along the *z* axis.
    pub fn z_orientation(self, orientation: orientation::Orientation<S>) -> Self {
        self.map_ty(|ty| SetOrientation::z_orientation(ty, orientation))
    }

    /// Specify the orientation around the *x* axis as an absolute value in radians.
    pub fn x_radians(self, x: S) -> Self {
        self.map_ty(|ty| SetOrientation::x_radians(ty, x))
    }

    /// Specify the orientation around the *y* axis as an absolute value in radians.
    pub fn y_radians(self, y: S) -> Self {
        self.map_ty(|ty| SetOrientation::y_radians(ty, y))
    }

    /// Specify the orientation around the *z* axis as an absolute value in radians.
    pub fn z_radians(self, z: S) -> Self {
        self.map_ty(|ty| SetOrientation::y_radians(ty, z))
    }

    /// Specify the orientation around the *x* axis as an absolute value in radians.
    pub fn x_degrees(self, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_degrees(ty, x))
    }

    /// Specify the orientation around the *y* axis as an absolute value in radians.
    pub fn y_degrees(self, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_degrees(ty, y))
    }

    /// Specify the orientation around the *z* axis as an absolute value in radians.
    pub fn z_degrees(self, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_degrees(ty, z))
    }

    /// Specify the orientation around the *x* axis as a number of turns around the axis.
    pub fn x_turns(self, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_turns(ty, x))
    }

    /// Specify the orientation around the *y* axis as a number of turns around the axis.
    pub fn y_turns(self, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_turns(ty, y))
    }

    /// Specify the orientation around the *z* axis as a number of turns around the axis.
    pub fn z_turns(self, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_turns(ty, z))
    }

    /// Specify the orientation along each axis with the given **Vector** of radians.
    ///
    /// This has the same affect as calling `self.x_radians(v.x).y_radians(v.y).z_radians(v.z)`.
    pub fn radians(self, v: Vector3<S>) -> Self {
        self.map_ty(|ty| SetOrientation::radians(ty, v))
    }

    /// Specify the orientation along each axis with the given **Vector** of degrees.
    ///
    /// This has the same affect as calling `self.x_degrees(v.x).y_degrees(v.y).z_degrees(v.z)`.
    pub fn degrees(self, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::degrees(ty, v))
    }

    /// Specify the orientation along each axis with the given **Vector** of "turns".
    ///
    /// This has the same affect as calling `self.x_turns(v.x).y_turns(v.y).z_turns(v.z)`.
    pub fn turns(self, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::turns(ty, v))
    }

    /// Specify the orientation with the given **Euler**.
    ///
    /// The euler can be specified in either radians (via **Rad**) or degrees (via **Deg**).
    pub fn euler<A>(self, e: Euler<A>) -> Self
    where
        S: BaseFloat,
        A: Angle + Into<Rad<S>>,
    {
        self.map_ty(|ty| SetOrientation::euler(ty, e))
    }

    /// Specify the orientation with the given **Quaternion**.
    pub fn quaternion(self, q: Quaternion<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::quaternion(ty, q))
    }

    // Relative orientation.

    /// Specify the orientation around the *x* axis as a relative value in radians.
    pub fn x_radians_relative(self, x: S) -> Self {
        self.map_ty(|ty| SetOrientation::x_radians_relative(ty, x))
    }

    /// Specify the orientation around the *y* axis as a relative value in radians.
    pub fn y_radians_relative(self, y: S) -> Self {
        self.map_ty(|ty| SetOrientation::y_radians_relative(ty, y))
    }

    /// Specify the orientation around the *z* axis as a relative value in radians.
    pub fn z_radians_relative(self, z: S) -> Self {
        self.map_ty(|ty| SetOrientation::z_radians_relative(ty, z))
    }

    /// Specify the orientation around the *x* axis as a relative value in radians.
    pub fn x_radians_relative_to(self, other: node::Index, x: S) -> Self {
        self.map_ty(|ty| SetOrientation::x_radians_relative_to(ty, other, x))
    }

    /// Specify the orientation around the *y* axis as a relative value in radians.
    pub fn y_radians_relative_to(self, other: node::Index, y: S) -> Self {
        self.map_ty(|ty| SetOrientation::y_radians_relative_to(ty, other, y))
    }

    /// Specify the orientation around the *z* axis as a relative value in radians.
    pub fn z_radians_relative_to(self, other: node::Index, z: S) -> Self {
        self.map_ty(|ty| SetOrientation::z_radians_relative_to(ty, other, z))
    }

    /// Specify the orientation around the *x* axis as a relative value in degrees.
    pub fn x_degrees_relative(self, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_degrees_relative(ty, x))
    }

    /// Specify the orientation around the *y* axis as a relative value in degrees.
    pub fn y_degrees_relative(self, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_degrees_relative(ty, y))
    }

    /// Specify the orientation around the *z* axis as a relative value in degrees.
    pub fn z_degrees_relative(self, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_degrees_relative(ty, z))
    }

    /// Specify the orientation around the *x* axis as a relative value in degrees.
    pub fn x_degrees_relative_to(self, other: node::Index, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_degrees_relative_to(ty, other, x))
    }

    /// Specify the orientation around the *y* axis as a relative value in degrees.
    pub fn y_degrees_relative_to(self, other: node::Index, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_degrees_relative_to(ty, other, y))
    }

    /// Specify the orientation around the *z* axis as a relative value in degrees.
    pub fn z_degrees_relative_to(self, other: node::Index, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_degrees_relative_to(ty, other, z))
    }

    /// Specify the relative orientation around the *x* axis as a number of turns around the axis.
    pub fn x_turns_relative(self, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_turns_relative(ty, x))
    }

    /// Specify the relative orientation around the *y* axis as a number of turns around the axis.
    pub fn y_turns_relative(self, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_turns_relative(ty, y))
    }

    /// Specify the relative orientation around the *z* axis as a number of turns around the axis.
    pub fn z_turns_relative(self, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_turns_relative(ty, z))
    }

    /// Specify the relative orientation around the *x* axis as a number of turns around the axis.
    pub fn x_turns_relative_to(self, other: node::Index, x: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::x_turns_relative_to(ty, other, x))
    }

    /// Specify the relative orientation around the *y* axis as a number of turns around the axis.
    pub fn y_turns_relative_to(self, other: node::Index, y: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::y_turns_relative_to(ty, other, y))
    }

    /// Specify the relative orientation around the *z* axis as a number of turns around the axis.
    pub fn z_turns_relative_to(self, other: node::Index, z: S) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::z_turns_relative_to(ty, other, z))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of radians.
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_radians_relative(v.x)
    ///     .y_radians_relative(v.y)
    ///     .z_radians_relative(v.z)
    /// ```
    pub fn radians_relative(self, v: Vector3<S>) -> Self {
        self.map_ty(|ty| SetOrientation::radians_relative(ty, v))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of radians.
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_radians_relative_to(other, v.x)
    ///     .y_radians_relative_to(other, v.y)
    ///     .z_radians_relative_to(other, v.z)
    /// ```
    pub fn radians_relative_to(self, other: node::Index, v: Vector3<S>) -> Self {
        self.map_ty(|ty| SetOrientation::radians_relative_to(ty, other, v))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of degrees.
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_degrees_relative(v.x)
    ///     .y_degrees_relative(v.y)
    ///     .z_degrees_relative(v.z)
    /// ```
    pub fn degrees_relative(self, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::degrees_relative(ty, v))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of degrees.
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_degrees_relative_to(other, v.x)
    ///     .y_degrees_relative_to(other, v.y)
    ///     .z_degrees_relative_to(other, v.z)
    /// ```
    pub fn degrees_relative_to(self, other: node::Index, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::degrees_relative_to(ty, other, v))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of "turns".
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_turns_relative(v.x)
    ///     .y_turns_relative(v.y)
    ///     .z_turns_relative(v.z)
    /// ```
    pub fn turns_relative(self, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::turns_relative(ty, v))
    }

    /// Specify a relative orientation along each axis with the given **Vector** of "turns".
    ///
    /// This has the same affect as the following:
    ///
    /// ```ignore
    /// self.x_turns_relative_to(other, v.x)
    ///     .y_turns_relative_to(other, v.y)
    ///     .z_turns_relative_to(other, v.z)
    /// ```
    pub fn turns_relative_to(self, other: node::Index, v: Vector3<S>) -> Self
    where
        S: BaseFloat,
    {
        self.map_ty(|ty| SetOrientation::turns_relative_to(ty, other, v))
    }

    /// Specify a relative orientation with the given **Euler**.
    ///
    /// The euler can be specified in either radians (via **Rad**) or degrees (via **Deg**).
    pub fn euler_relative<A>(self, e: Euler<A>) -> Self
    where
        S: BaseFloat,
        A: Angle + Into<Rad<S>>,
    {
        self.map_ty(|ty| SetOrientation::euler_relative(ty, e))
    }

    /// Specify a relative orientation with the given **Euler**.
    ///
    /// The euler can be specified in either radians (via **Rad**) or degrees (via **Deg**).
    pub fn euler_relative_to<A>(self, other: node::Index, e: Euler<A>) -> Self
    where
        S: BaseFloat,
        A: Angle + Into<Rad<S>>,
    {
        self.map_ty(|ty| SetOrientation::euler_relative_to(ty, other, e))
    }

    // Higher level methods.

    /// Specify the "pitch" of the orientation in radians.
    ///
    /// This has the same effect as calling `x_radians`.
    pub fn pitch(self, pitch: S) -> Self {
        self.map_ty(|ty| SetOrientation::pitch(ty, pitch))
    }

    /// Specify the "yaw" of the orientation in radians.
    ///
    /// This has the same effect as calling `y_radians`.
    pub fn yaw(self, yaw: S) -> Self {
        self.map_ty(|ty| SetOrientation::yaw(ty, yaw))
    }

    /// Specify the "roll" of the orientation in radians.
    ///
    /// This has the same effect as calling `z_radians`.
    pub fn roll(self, roll: S) -> Self {
        self.map_ty(|ty| SetOrientation::roll(ty, roll))
    }

    /// Assuming we're looking at a 2D plane, positive values cause a clockwise rotation where the
    /// given value is specified in radians.
    ///
    /// This is equivalent to calling the `z_radians` or `roll` methods.
    pub fn rotate(self, radians: S) -> Self {
        self.map_ty(|ty| SetOrientation::rotate(ty, radians))
    }
}