1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
//! A simple API for drawing 2D and 3D graphics. See the [**Draw** type](./struct.Draw.html) for
//! more details.

use crate::geom::graph::{edge, node};
use crate::geom::{self, Vector3};
use crate::math::BaseFloat;
use crate::text;
use lyon::path::PathEvent;
use lyon::tessellation::FillTessellator;
use std::cell::{Ref, RefCell};
use std::collections::HashMap;
use std::{fmt, mem, ops};

pub use self::backend::wgpu::Renderer;
pub use self::background::Background;
pub use self::drawing::{Drawing, DrawingContext};
pub use self::mesh::intermediary::{
    IntermediaryMesh, IntermediaryMeshBuilder, IntermediaryVertexData, IntermediaryVertexDataRanges,
};
pub use self::mesh::Mesh;
use self::primitive::Primitive;
use self::properties::spatial::orientation::{self, Orientation};
use self::properties::spatial::position::{self, Position};
use self::properties::IntoDrawn;
pub use self::theme::Theme;

pub mod backend;
pub mod background;
mod drawing;
pub mod mesh;
pub mod primitive;
pub mod properties;
pub mod theme;

/// A simple API for drawing 2D and 3D graphics.
///
/// **Draw** provides a simple way to compose together geometric primitives and text (TODO) with
/// custom colours and textures and draw them to the screen.
///
/// You can also ask **Draw** for the sequence of vertices or triangles (with or without
/// colours/textures) that make up the entire scene that you have created.
///
/// Internally **Draw** uses a **geom::Graph** for placing geometry and text in 3D space.
///
/// **Draw** has 2 groups of methods:
///
/// 1. **Creation**: These methods compose new geometry and text with colours and textures.
///
/// 2. **Rendering**: These methods provide ways of rendering the graphics either directly to the
///    frame for the current display or to a list of vertices or triangles for lower-level, more
///    flexible access.
///
/// See the
/// [simple_draw.rs](https://github.com/nannou-org/nannou/blob/master/examples/simple_draw.rs)
/// example for a demonstration of how to use the **App**'s custom **Draw** type.
#[derive(Clone, Debug)]
pub struct Draw<S = geom::scalar::Default>
where
    S: BaseFloat,
{
    // The state of the **Draw** behind a RefCell. We do this in order to avoid requiring a `mut`
    // handle to a `draw`. The primary purpose of a **Draw** is to be an easy-as-possible,
    // high-level API for drawing stuff. In order to be friendlier to new users, we want to avoid
    // them having to think about mutability and focus on creativity. Rust-lang nuances can come
    // later.
    state: RefCell<State<S>>,
}

/// The inner state of the **Draw** type.
///
/// The **Draw** type stores its **State** behind a **RefCell** - a type used for moving mutability
/// checks from compile time to runtime. We do this in order to avoid requiring a `mut` handle to a
/// `draw`. The primary purpose of a **Draw** is to be an easy-as-possible, high-level API for
/// drawing stuff. In order to be friendlier to new users, we want to avoid requiring them to think
/// about mutability and instead focus on creativity. Rust-lang nuances can come later.
#[derive(Clone, Debug)]
pub struct State<S = geom::scalar::Default>
where
    S: BaseFloat,
{
    /// Relative positioning, orientation and scaling of geometry.
    geom_graph: geom::Graph<S>,
    /// For performing a depth-first search over the geometry graph.
    geom_graph_dfs: RefCell<geom::graph::node::Dfs<S>>,
    /// State made accessible via the `DrawingContext`.
    intermediary_state: RefCell<IntermediaryState<S>>,
    /// The mesh containing vertices for all drawn shapes, etc.
    mesh: Mesh<S>,
    /// The map from node indices to their vertex and index ranges within the mesh.
    ranges: HashMap<node::Index, Ranges>,
    /// Primitives that are in the process of being drawn.
    drawing: HashMap<node::Index, Primitive<S>>,
    /// The last node that was **Drawn**.
    last_node_drawn: Option<node::Index>,
    /// The theme containing default values.
    theme: Theme,
    /// If `Some`, the **Draw** should first clear the frame's gl context with the given color.
    background_color: Option<properties::LinSrgba>,
}

/// The CPU half of the glyph cache used for caching text.
#[derive(Clone, Debug)]
pub struct GlyphCache {
    /// Manages the caching process.
    cache: GlyphCacheWrapper,
    /// The buffer used for storing pixel data to be written to the GPU.
    pixel_buffer: Vec<u8>,
    /// Whether or not the glyph cache has been updated and needs to be written to an image.
    has_updated: bool,
}

/// State made accessible via the `DrawingContext`.
#[derive(Clone, Debug)]
pub struct IntermediaryState<S> {
    /// Buffers of vertex data that may be re-used for paths, meshes, etc between view calls.
    intermediary_mesh: IntermediaryMesh<S>,
    /// A fill tessellator that may be re-used for 2D paths, meshes, etc between view calls.
    fill_tessellator: FillTessellatorWrapper,
    /// A re-usable buffer for collecting path events.
    path_event_buffer: Vec<PathEvent>,
    /// A buffer containing all text.
    text_buffer: String,
    /// The CPU side of the glyph cache.
    glyph_cache: GlyphCache,
}

// Simple wrapper providing Clone and Debug.
#[derive(Default)]
pub(crate) struct FillTessellatorWrapper(pub(crate) FillTessellator);

// A wrapper providing debug and clone implementations for the glyph cache.
pub(crate) struct GlyphCacheWrapper(pub(crate) text::GlyphCache<'static>);

/// The vertex and index ranges into a mesh for a particular node.
#[derive(Clone, Debug)]
struct Ranges {
    vertices: ops::Range<usize>,
    indices: ops::Range<usize>,
}

const WOULD_CYCLE: &'static str =
    "drawing the given primitive with the given relative positioning would have caused a cycle \
     within the geometry graph";

/// An iterator yielding the transformed, indexed vertices for a node.
pub type NodeVertices<'a, S = geom::scalar::Default> =
    node::TransformedVertices<crate::mesh::Vertices<Ref<'a, Mesh<S>>>, S>;

// /// An iterator yielding the transformed vertices for a node.
// pub struct NodeVertices<'a, S> {
// }

/// An iterator yielding the transformed raw vertices for a node.
pub type RawNodeVertices<'a, S = geom::scalar::Default> =
    node::TransformedVertices<crate::mesh::RawVertices<Ref<'a, Mesh<S>>>, S>;

/// An iterator yielding the transformed triangles for a node.
pub type NodeTriangles<'a, S = geom::scalar::Default> =
    geom::tri::IterFromVertices<NodeVertices<'a, S>>;

/// An iterator yielding all indexed mesh vertices transformed via the geometry graph.
#[derive(Debug)]
pub struct Vertices<'a, S = geom::scalar::Default>
where
    S: 'a + BaseFloat,
{
    draw: &'a Draw<S>,
    node_vertices: Option<NodeVertices<'a, S>>,
}

/// An iterator yielding all indexed mesh triangles transformed via the geometry graph.
pub type Triangles<'a, S = geom::scalar::Default> = geom::tri::IterFromVertices<Vertices<'a, S>>;

/// An iterator yielding all raw mesh vertices transformed via the geometry graph.
#[derive(Debug)]
pub struct RawVertices<'a, S = geom::scalar::Default>
where
    S: 'a + BaseFloat,
{
    draw: &'a Draw<S>,
    node_vertices: Option<RawNodeVertices<'a, S>>,
}

impl GlyphCache {
    pub const DEFAULT_W: u32 = 256;
    pub const DEFAULT_H: u32 = 256;
    pub const DEFAULT_DIMENSIONS: (u32, u32) = (Self::DEFAULT_W, Self::DEFAULT_H);
}

impl<S> IntermediaryVertexData<S> {
    /// Clears all buffers.
    pub fn reset(&mut self) {
        self.points.clear();
        self.colors.clear();
        self.tex_coords.clear();
    }
}

impl<S> IntermediaryMesh<S> {
    /// Clears all buffers.
    pub fn reset(&mut self) {
        self.vertex_data.reset();
        self.indices.clear();
    }
}

impl<S> IntermediaryState<S> {
    pub fn reset(&mut self) {
        self.intermediary_mesh.reset();
        self.path_event_buffer.clear();
        self.text_buffer.clear();
    }
}

impl<S> State<S>
where
    S: BaseFloat,
{
    // Resets all state within the `Draw` instance.
    fn reset(&mut self) {
        self.geom_graph.clear();
        self.geom_graph_dfs.borrow_mut().reset(&self.geom_graph);
        self.drawing.clear();
        self.ranges.clear();
        self.intermediary_state.borrow_mut().reset();
        self.mesh.clear();
        self.background_color = None;
        self.last_node_drawn = None;
    }

    // // Produce the transformed mesh vertices for the node at the given index.
    // //
    // // Returns **None** if there is no node for the given index.
    // fn node_vertices(&mut self, n: node::Index) -> Option<NodeVertices<S>> {

    // }

    // Drain any remaining `drawing`s, convert them to their **Drawn** state and insert them into
    // the inner mesh and geometry graph.
    fn finish_remaining_drawings(&mut self) -> Result<(), geom::graph::WouldCycle<S>> {
        let mut drawing = mem::replace(&mut self.drawing, Default::default());
        for (node_index, primitive) in drawing.drain() {
            draw_primitive(self, node_index, primitive)?;
        }
        mem::replace(&mut self.drawing, drawing);
        Ok(())
    }

    // Finish the drawing at the given node index if it is not yet complete.
    fn finish_drawing(&mut self, n: &node::Index) -> Result<(), geom::graph::WouldCycle<S>> {
        if let Some(primitive) = self.drawing.remove(n) {
            draw_primitive(self, *n, primitive)?;
        }
        Ok(())
    }

    // The length of the untransformed node at the given index along the axis returned by the
    // given `point_axis` function.
    //
    // **Note:** If this node's **Drawing** is not yet complete, this method will cause it to
    // finish and submit the **Drawn** state to the inner geometry graph and mesh.
    fn untransformed_dimension_of<F>(&mut self, n: &node::Index, point_axis: &F) -> Option<S>
    where
        F: Fn(&mesh::vertex::Point<S>) -> S,
    {
        self.finish_drawing(n).expect(WOULD_CYCLE);
        self.ranges.get(n).and_then(|ranges| {
            let points = self.mesh.points()[ranges.vertices.clone()].iter().cloned();
            min_max_dimension(points, point_axis).map(|(min, max)| max - min)
        })
    }

    // The length of the untransformed node at the given index along the *x* axis.
    fn untransformed_x_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.untransformed_dimension_of(n, &point_x)
    }

    // The length of the untransformed node at the given index along the *y* axis.
    fn untransformed_y_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.untransformed_dimension_of(n, &point_y)
    }

    // The length of the untransformed node at the given index along the *y* axis.
    fn untransformed_z_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.untransformed_dimension_of(n, &point_z)
    }

    // The length of the transformed node at the given index along the axis returned by the given
    // `point_axis` function.
    //
    // **Note:** If this node's **Drawing** is not yet complete, this method will cause it to
    // finish and submit the **Drawn** state to the inner geometry graph and mesh.
    fn dimension_of<F>(&mut self, n: &node::Index, point_axis: &F) -> Option<S>
    where
        F: Fn(&mesh::vertex::Point<S>) -> S,
    {
        self.finish_drawing(n).expect(WOULD_CYCLE);
        self.ranges.get(n).and_then(|ranges| {
            let points = self.mesh.points()[ranges.vertices.clone()].iter().cloned();
            let points = self
                .geom_graph
                .node_vertices(*n, points)
                .expect("no node at index");
            min_max_dimension(points, point_axis).map(|(min, max)| max - min)
        })
    }

    // The length of the transformed node at the given index along the *x* axis.
    fn x_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.dimension_of(n, &point_x)
    }

    // The length of the transformed node at the given index along the *y* axis.
    fn y_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.dimension_of(n, &point_y)
    }

    // The length of the transformed node at the given index along the *z* axis.
    fn z_dimension_of(&mut self, n: &node::Index) -> Option<S> {
        self.dimension_of(n, &point_z)
    }
}

impl<S> Draw<S>
where
    S: BaseFloat,
{
    /// Create a new **Draw** instance.
    ///
    /// This is the same as calling **Draw::default**.
    pub fn new() -> Self {
        Self::default()
    }

    /// Resets all state within the `Draw` instance.
    pub fn reset(&self) {
        self.state.borrow_mut().reset();
    }

    // Primitive geometry.

    /// Specify a color with which the background should be cleared.
    pub fn background(&self) -> Background<S> {
        background::new(self)
    }

    /// Add the given type to be drawn.
    pub fn a<T>(&self, primitive: T) -> Drawing<T, S>
    where
        T: Into<Primitive<S>>,
        Primitive<S>: Into<Option<T>>,
    {
        let index = self
            .state
            .borrow_mut()
            .geom_graph
            .add_node(geom::graph::Node::Point);
        let primitive: Primitive<S> = primitive.into();
        self.state.borrow_mut().drawing.insert(index, primitive);
        drawing::new(self, index)
    }

    /// Begin drawing a **Path**.
    pub fn path(&self) -> Drawing<primitive::PathInit<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing an **Ellipse**.
    pub fn ellipse(&self) -> Drawing<primitive::Ellipse<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Line**.
    pub fn line(&self) -> Drawing<primitive::Line<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Quad**.
    pub fn quad(&self) -> Drawing<primitive::Quad<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Rect**.
    pub fn rect(&self) -> Drawing<primitive::Rect<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Triangle**.
    pub fn tri(&self) -> Drawing<primitive::Tri<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Polygon**.
    pub fn polygon(&self) -> Drawing<primitive::PolygonInit<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Mesh**.
    pub fn mesh(&self) -> Drawing<primitive::mesh::Vertexless, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Polyline**.
    ///
    /// Note that this is simply short-hand for `draw.path().stroke()`
    pub fn polyline(&self) -> Drawing<primitive::PathStroke<S>, S> {
        self.path().stroke()
    }

    /// Begin drawing a **Text**.
    ///
    /// Note: This is currently short-hand for using the `draw.path()` to draw events yielded by
    /// the text, however in the future this will be made more efficient by using a GPU glyph
    /// cache.
    pub fn text(&self, s: &str) -> Drawing<primitive::Text<S>, S> {
        let text = {
            let state = self.state.borrow();
            let mut intermediary_state = state.intermediary_state.borrow_mut();
            let ctxt = DrawingContext::from_intermediary_state(&mut *intermediary_state);
            primitive::text::Text::new(ctxt, s)
        };
        self.a(text)
    }

    /// Produce the transformed mesh vertices for the node at the given index.
    ///
    /// Returns **None** if there is no node for the given index.
    pub fn node_vertices(&self, n: node::Index) -> Option<NodeVertices<S>> {
        self.state
            .borrow_mut()
            .finish_drawing(&n)
            .expect(WOULD_CYCLE);
        let index_range = match self.state.borrow().ranges.get(&n) {
            None => return None,
            Some(ranges) => ranges.indices.clone(),
        };
        let vertices = crate::mesh::vertices(self.inner_mesh()).index_range(index_range);
        self.state.borrow().geom_graph.node_vertices(n, vertices)
    }

    /// Produce the transformed triangles for the node at the given index.
    ///
    /// **Note:** If the node's **Drawing** was still in progress, it will first be finished and
    /// inserted into the mesh and geometry graph before producing the triangles iterator.
    pub fn node_triangles(&self, n: node::Index) -> Option<NodeTriangles<S>> {
        self.node_vertices(n).map(geom::tri::iter_from_vertices)
    }

    /// Produce an iterator yielding all vertices from the inner mesh transformed via the inner
    /// geometry graph.
    ///
    /// This method ignores the mesh indices buffer and instead produces the vertices "raw".
    ///
    /// **Note:** If there are any **Drawing**s in progress, these will first be drained and
    /// completed before any vertices are yielded.
    pub fn raw_vertices(&self) -> RawVertices<S> {
        self.finish_remaining_drawings().expect(WOULD_CYCLE);
        let state = self.state.borrow();
        state.geom_graph_dfs.borrow_mut().reset(&state.geom_graph);
        let draw = self;
        let node_vertices = None;
        RawVertices {
            draw,
            node_vertices,
        }
    }

    /// Produce an iterator yielding all indexed vertices from the inner mesh transformed via the
    /// inner geometry graph.
    ///
    /// Vertices are yielded in depth-first-order of the geometry graph nodes from which they are
    /// produced.
    ///
    /// **Note:** If there are any **Drawing**s in progress, these will first be drained and
    /// completed before any vertices are yielded.
    pub fn vertices(&self) -> Vertices<S> {
        self.finish_remaining_drawings().expect(WOULD_CYCLE);
        let state = self.state.borrow();
        state.geom_graph_dfs.borrow_mut().reset(&state.geom_graph);
        let draw = self;
        let node_vertices = None;
        Vertices {
            draw,
            node_vertices,
        }
    }

    /// Produce an iterator yielding all triangles from the inner mesh transformed via the inner
    /// geometry graph.
    ///
    /// Triangles are yielded in depth-first-order of the geometry graph nodes from which they are
    /// produced.
    ///
    /// **Note:** If there are any **Drawing**s in progress, these will first be drained and
    /// completed before any vertices are yielded.
    pub fn triangles(&self) -> Triangles<S> {
        geom::tri::iter_from_vertices(self.vertices())
    }

    /// Borrow the **Draw**'s inner **Mesh**.
    pub fn inner_mesh(&self) -> Ref<Mesh<S>> {
        Ref::map(self.state.borrow(), |s| &s.mesh)
    }

    // Dimensions methods.

    /// The length of the untransformed node at the given index along the axis returned by the
    /// given `point_axis` function.
    pub fn untransformed_dimension_of<F>(&self, n: &node::Index, point_axis: &F) -> Option<S>
    where
        F: Fn(&mesh::vertex::Point<S>) -> S,
    {
        self.state
            .borrow_mut()
            .untransformed_dimension_of(n, point_axis)
    }

    /// The length of the untransformed node at the given index along the *x* axis.
    pub fn untransformed_x_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().untransformed_x_dimension_of(n)
    }

    /// The length of the untransformed node at the given index along the *y* axis.
    pub fn untransformed_y_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().untransformed_y_dimension_of(n)
    }

    /// The length of the untransformed node at the given index along the *y* axis.
    pub fn untransformed_z_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().untransformed_z_dimension_of(n)
    }

    /// Determine the raw, untransformed dimensions of the node at the given index.
    ///
    /// Returns `None` if their is no node within the **geom::Graph** for the given index or if
    /// the node has not yet been **Drawn**.
    pub fn untransformed_dimensions_of(&self, n: &node::Index) -> Option<Vector3<S>> {
        if self.state.borrow().geom_graph.node(*n).is_none()
            || !self.state.borrow().ranges.contains_key(n)
        {
            return None;
        }
        let dimensions = Vector3 {
            x: self.untransformed_x_dimension_of(n).unwrap_or_else(S::zero),
            y: self.untransformed_y_dimension_of(n).unwrap_or_else(S::zero),
            z: self.untransformed_z_dimension_of(n).unwrap_or_else(S::zero),
        };
        Some(dimensions)
    }

    /// The length of the transformed node at the given index along the axis returned by the given
    /// `point_axis` function.
    pub fn dimension_of<F>(&self, n: &node::Index, point_axis: &F) -> Option<S>
    where
        F: Fn(&mesh::vertex::Point<S>) -> S,
    {
        self.state.borrow_mut().dimension_of(n, point_axis)
    }

    /// The length of the transformed node at the given index along the *x* axis.
    pub fn x_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().x_dimension_of(n)
    }

    /// The length of the transformed node at the given index along the *y* axis.
    pub fn y_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().y_dimension_of(n)
    }

    /// The length of the transformed node at the given index along the *z* axis.
    pub fn z_dimension_of(&self, n: &node::Index) -> Option<S> {
        self.state.borrow_mut().z_dimension_of(n)
    }

    /// Drain any remaining `drawing`s, convert them to their **Drawn** state and insert them into
    /// the inner mesh and geometry graph.
    pub fn finish_remaining_drawings(&self) -> Result<(), geom::graph::WouldCycle<S>> {
        self.state.borrow_mut().finish_remaining_drawings()
    }
}

impl<S> Default for IntermediaryState<S> {
    fn default() -> Self {
        let intermediary_mesh = Default::default();
        let fill_tessellator = Default::default();
        let path_event_buffer = Default::default();
        let text_buffer = Default::default();
        let glyph_cache = Default::default();
        IntermediaryState {
            intermediary_mesh,
            fill_tessellator,
            path_event_buffer,
            text_buffer,
            glyph_cache,
        }
    }
}

impl<S> Default for State<S>
where
    S: BaseFloat,
{
    fn default() -> Self {
        let geom_graph = Default::default();
        let geom_graph_dfs = RefCell::new(geom::graph::node::Dfs::new(&geom_graph));
        let drawing = Default::default();
        let intermediary_state = RefCell::new(Default::default());
        let mesh = Default::default();
        let ranges = Default::default();
        let theme = Default::default();
        let last_node_drawn = Default::default();
        let background_color = Default::default();
        State {
            geom_graph,
            geom_graph_dfs,
            intermediary_state,
            mesh,
            drawing,
            ranges,
            theme,
            last_node_drawn,
            background_color,
        }
    }
}

impl<S> Default for Draw<S>
where
    S: BaseFloat,
{
    fn default() -> Self {
        let state = RefCell::new(Default::default());
        Draw { state }
    }
}

impl<'a, S> Iterator for Vertices<'a, S>
where
    S: BaseFloat,
{
    type Item = mesh::Vertex<S>;
    fn next(&mut self) -> Option<Self::Item> {
        let Vertices {
            ref draw,
            ref mut node_vertices,
        } = *self;
        loop {
            if let Some(v) = node_vertices.as_mut().and_then(|n| n.next()) {
                return Some(v);
            }
            let next_transform = {
                let state = draw.state.borrow();
                let mut dfs = state.geom_graph_dfs.borrow_mut();
                dfs.next_transform(&state.geom_graph)
            };
            match next_transform {
                None => return None,
                Some((n, transform)) => {
                    let index_range = match draw.state.borrow().ranges.get(&n) {
                        None => continue,
                        Some(ranges) => ranges.indices.clone(),
                    };
                    let vertices =
                        crate::mesh::vertices(draw.inner_mesh()).index_range(index_range);
                    let transformed_vertices = transform.vertices(vertices);
                    *node_vertices = Some(transformed_vertices);
                }
            }
        }
    }
}

impl<'a, S> Iterator for RawVertices<'a, S>
where
    S: BaseFloat,
{
    type Item = mesh::Vertex<S>;
    fn next(&mut self) -> Option<Self::Item> {
        let RawVertices {
            ref draw,
            ref mut node_vertices,
        } = *self;
        loop {
            if let Some(v) = node_vertices.as_mut().and_then(|n| n.next()) {
                return Some(v);
            }
            let next_transform = {
                let state = draw.state.borrow();
                let mut dfs = state.geom_graph_dfs.borrow_mut();
                dfs.next_transform(&state.geom_graph)
            };
            match next_transform {
                None => return None,
                Some((n, transform)) => {
                    let vertex_range = match draw.state.borrow().ranges.get(&n) {
                        None => continue,
                        Some(ranges) => ranges.vertices.clone(),
                    };
                    let vertices = crate::mesh::raw_vertices(draw.inner_mesh()).range(vertex_range);
                    let transformed_vertices = transform.vertices(vertices);
                    *node_vertices = Some(transformed_vertices);
                }
            }
        }
    }
}

impl Clone for FillTessellatorWrapper {
    fn clone(&self) -> Self {
        Default::default()
    }
}

impl Clone for GlyphCacheWrapper {
    fn clone(&self) -> Self {
        GlyphCacheWrapper(self.0.to_builder().build())
    }
}

impl fmt::Debug for FillTessellatorWrapper {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "FillTessellator")
    }
}

impl fmt::Debug for GlyphCacheWrapper {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "GlyphCache")
    }
}

impl ops::Deref for GlyphCacheWrapper {
    type Target = text::GlyphCache<'static>;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl Default for GlyphCache {
    fn default() -> Self {
        let (w, h) = GlyphCache::DEFAULT_DIMENSIONS;
        let cache = text::GlyphCache::builder().dimensions(w, h).build().into();
        let pixel_buffer = vec![0u8; w as usize * h as usize];
        let has_updated = false;
        GlyphCache {
            cache,
            pixel_buffer,
            has_updated,
        }
    }
}

impl From<text::GlyphCache<'static>> for GlyphCacheWrapper {
    fn from(g: text::GlyphCache<'static>) -> Self {
        GlyphCacheWrapper(g)
    }
}

// Given some `position` along the given axis return the resulting geom::Graph edge and the parent.
fn position_to_edge<S, F>(
    node_index: node::Index,
    position: &Position<S>,
    draw: &mut State<S>,
    axis: edge::Axis,
    point_axis: &F,
) -> (geom::graph::Edge<S>, node::Index)
where
    S: BaseFloat,
    F: Fn(&mesh::vertex::Point<S>) -> S,
{
    match *position {
        // *s* relative to *origin*.
        Position::Absolute(s) => {
            let edge = geom::graph::Edge::position(axis, s);
            let origin = draw.geom_graph.origin();
            (edge, origin)
        }

        Position::Relative(relative, maybe_parent) => {
            let parent = maybe_parent
                .or(draw.last_node_drawn)
                .unwrap_or(draw.geom_graph.origin());
            let edge = match relative {
                // Relative position.
                position::Relative::Scalar(s) => geom::graph::Edge::position(axis, s),

                // Align end with
                position::Relative::Align(align) => match align {
                    position::Align::Middle => {
                        let zero = S::zero();
                        geom::graph::Edge::position(axis, zero)
                    }
                    align => {
                        let one = S::one();
                        let (direction, margin) = match align {
                            position::Align::Start(mgn) => (-one, mgn.unwrap_or(S::zero())),
                            position::Align::End(mgn) => (one, mgn.unwrap_or(S::zero())),
                            _ => unreachable!(),
                        };
                        let node_dimension = draw
                            .untransformed_dimension_of(&node_index, point_axis)
                            .unwrap();
                        let parent_dimension = draw
                            .dimension_of(&parent, point_axis)
                            .expect("no node for relative position");
                        let half = S::from(0.5).unwrap();
                        let node_half_dim = node_dimension * half;
                        let parent_half_dim = parent_dimension * half;
                        let weight = direction * (parent_half_dim - node_half_dim - margin);
                        geom::graph::Edge::position(axis, weight)
                    }
                },

                position::Relative::Direction(direction, amt) => {
                    let one = S::one();
                    let direction = match direction {
                        position::Direction::Backwards => -one,
                        position::Direction::Forwards => one,
                    };
                    let node_dimension = draw
                        .untransformed_dimension_of(&node_index, point_axis)
                        .unwrap();
                    let parent_dimension = draw
                        .dimension_of(&parent, point_axis)
                        .expect("no node for relative position");
                    let half = S::from(0.5).unwrap();
                    let node_half_dim = node_dimension * half;
                    let parent_half_dim = parent_dimension * half;
                    let weight = direction * (parent_half_dim + node_half_dim + amt);
                    geom::graph::Edge::position(axis, weight)
                }
            };
            (edge, parent)
        }
    }
}

// Given some `orientation` around the given axis return the resulting `geom::Graph` edge and the
// parent.
fn orientation_to_edge<S>(
    orientation: &Orientation<S>,
    draw: &mut State<S>,
    axis: edge::Axis,
) -> (geom::graph::Edge<S>, node::Index)
where
    S: BaseFloat,
{
    match *orientation {
        Orientation::Absolute(s) => {
            let edge = geom::graph::Edge::orientation(axis, s);
            let origin = draw.geom_graph.origin();
            (edge, origin)
        }
        Orientation::Relative(s, maybe_parent) => {
            let parent = maybe_parent
                .or(draw.last_node_drawn)
                .unwrap_or(draw.geom_graph.origin());
            let edge = geom::graph::Edge::orientation(axis, s);
            (edge, parent)
        }
    }
}

fn point_x<S: Clone>(p: &mesh::vertex::Point<S>) -> S {
    p.x.clone()
}
fn point_y<S: Clone>(p: &mesh::vertex::Point<S>) -> S {
    p.y.clone()
}
fn point_z<S: Clone>(p: &mesh::vertex::Point<S>) -> S {
    p.z.clone()
}

// Convert the given `drawing` into its **Drawn** state and insert it into the mesh and geometry
// graph.
fn into_drawn<T, S>(
    draw: &mut State<S>,
    node_index: node::Index,
    drawing: T,
) -> Result<(), geom::graph::WouldCycle<S>>
where
    T: IntoDrawn<S>,
    S: BaseFloat,
{
    // Convert the target into its **Drawn** state.
    let (spatial, vertices, indices) = drawing.into_drawn(properties::Draw::new(draw));

    // Update the mesh with the non-transformed vertices.
    let vertices_start_index = draw.mesh.raw_vertex_count();
    let indices_start_index = draw.mesh.indices().len();

    {
        let State {
            ref mut mesh,
            ref intermediary_state,
            ..
        } = *draw;
        let intermediary_state = intermediary_state.borrow();
        let intermediary_mesh = &intermediary_state.intermediary_mesh;
        let min_intermediary_index = properties::Indices::min_index(&indices);
        let vertices = properties::Vertices::into_iter(vertices, intermediary_mesh);
        let indices = properties::Indices::into_iter(indices, &intermediary_mesh.indices)
            .map(|i| vertices_start_index + i - min_intermediary_index);
        mesh.extend(vertices, indices);
    }

    // Update the **Draw**'s range map.
    let vertices_end_index = draw.mesh.raw_vertex_count();
    let indices_end_index = draw.mesh.indices().len();
    let vertices = vertices_start_index..vertices_end_index;
    let indices = indices_start_index..indices_end_index;
    let ranges = Ranges { vertices, indices };
    draw.ranges.insert(node_index, ranges);

    // Update the position edges within the geometry graph.
    let p = &spatial.position;
    let x = p.x.map(|pos| {
        (
            pos,
            edge::Axis::X,
            point_x as fn(&mesh::vertex::Point<S>) -> S,
        )
    });
    let y = p.y.map(|pos| (pos, edge::Axis::Y, point_y as _));
    let z = p.z.map(|pos| (pos, edge::Axis::Z, point_z as _));
    let positions = x.into_iter().chain(y).chain(z);
    for (position, axis, point_axis) in positions {
        let (edge, parent) = position_to_edge(node_index, &position, draw, axis, &point_axis);
        draw.geom_graph.set_edge(parent, node_index, edge)?;
    }

    // Update the orientation edges within the geometry graph.
    match spatial.orientation {
        orientation::Properties::LookAt(look_at) => {
            // The location of the target.
            let _p = match look_at {
                orientation::LookAt::Node(_node) => unimplemented!(),
                orientation::LookAt::Point(point) => point,
            };
            unimplemented!();
        }
        orientation::Properties::Axes(axes) => {
            let x = axes.x.map(|axis| (axis, edge::Axis::X));
            let y = axes.y.map(|axis| (axis, edge::Axis::Y));
            let z = axes.z.map(|axis| (axis, edge::Axis::Z));
            let axes = x.into_iter().chain(y).chain(z);
            for (orientation, axis) in axes {
                let (edge, parent) = orientation_to_edge(&orientation, draw, axis);
                draw.geom_graph.set_edge(parent, node_index, edge)?;
            }
        }
    }

    // Set this node as the last drawn node.
    draw.last_node_drawn = Some(node_index);

    Ok(())
}

// Convert the given `primitive` into its **Drawn** state and insert it into the mesh and geometry
// graph.
fn draw_primitive<S>(
    draw: &mut State<S>,
    node_index: node::Index,
    primitive: Primitive<S>,
) -> Result<(), geom::graph::WouldCycle<S>>
where
    S: BaseFloat,
{
    match primitive {
        Primitive::Ellipse(prim) => into_drawn(draw, node_index, prim),
        Primitive::Line(prim) => into_drawn(draw, node_index, prim),
        Primitive::Mesh(prim) => into_drawn(draw, node_index, prim),
        Primitive::Path(prim) => into_drawn(draw, node_index, prim),
        Primitive::Polygon(prim) => into_drawn(draw, node_index, prim),
        Primitive::Quad(prim) => into_drawn(draw, node_index, prim),
        Primitive::Rect(prim) => into_drawn(draw, node_index, prim),
        Primitive::Text(prim) => into_drawn(draw, node_index, prim),
        Primitive::Tri(prim) => into_drawn(draw, node_index, prim),

        Primitive::MeshVertexless(_)
        | Primitive::PathInit(_)
        | Primitive::PathFill(_)
        | Primitive::PathStroke(_)
        | Primitive::PolygonInit(_) => Ok(()),
    }
}

// Produce the min and max over the axis yielded via `point_axis` for the given `points`.
fn min_max_dimension<I, F, S>(points: I, point_axis: &F) -> Option<(S, S)>
where
    I: IntoIterator<Item = mesh::vertex::Point<S>>,
    F: Fn(&mesh::vertex::Point<S>) -> S,
    S: BaseFloat,
{
    let mut points = points.into_iter();
    points.next().map(|first| {
        let s = point_axis(&first);
        let init = (s, s);
        points.fold(init, |(min, max), p| {
            let s = point_axis(&p);
            (s.min(min), s.max(max))
        })
    })
}