1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
use num::Zero;
use simba::scalar::ClosedAdd;
use std::iter;
use std::marker::PhantomData;
use std::ops::Range;
use std::slice;

use crate::allocator::Allocator;
use crate::sparse::cs_utils;
use crate::{Const, DefaultAllocator, Dim, Dynamic, Matrix, OVector, Scalar, Vector, U1};

pub struct ColumnEntries<'a, T> {
    curr: usize,
    i: &'a [usize],
    v: &'a [T],
}

impl<'a, T> ColumnEntries<'a, T> {
    #[inline]
    pub fn new(i: &'a [usize], v: &'a [T]) -> Self {
        assert_eq!(i.len(), v.len());
        Self { curr: 0, i, v }
    }
}

impl<'a, T: Clone> Iterator for ColumnEntries<'a, T> {
    type Item = (usize, T);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.curr >= self.i.len() {
            None
        } else {
            let res = Some((unsafe { *self.i.get_unchecked(self.curr) }, unsafe {
                self.v.get_unchecked(self.curr).clone()
            }));
            self.curr += 1;
            res
        }
    }
}

// TODO: this structure exists for now only because impl trait
// cannot be used for trait method return types.
/// Trait for iterable compressed-column matrix storage.
pub trait CsStorageIter<'a, T, R, C = U1> {
    /// Iterator through all the rows of a specific columns.
    ///
    /// The elements are given as a tuple (`row_index`, value).
    type ColumnEntries: Iterator<Item = (usize, T)>;
    /// Iterator through the row indices of a specific column.
    type ColumnRowIndices: Iterator<Item = usize>;

    /// Iterates through all the row indices of the j-th column.
    fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices;
    /// Iterates through all the entries of the j-th column.
    fn column_entries(&'a self, j: usize) -> Self::ColumnEntries;
}

/// Trait for mutably iterable compressed-column sparse matrix storage.
pub trait CsStorageIterMut<'a, T: 'a, R, C = U1> {
    /// Mutable iterator through all the values of the sparse matrix.
    type ValuesMut: Iterator<Item = &'a mut T>;
    /// Mutable iterator through all the rows of a specific columns.
    ///
    /// The elements are given as a tuple (`row_index`, value).
    type ColumnEntriesMut: Iterator<Item = (usize, &'a mut T)>;

    /// A mutable iterator through the values buffer of the sparse matrix.
    fn values_mut(&'a mut self) -> Self::ValuesMut;
    /// Iterates mutably through all the entries of the j-th column.
    fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut;
}

/// Trait for compressed column sparse matrix storage.
pub trait CsStorage<T, R, C = U1>: for<'a> CsStorageIter<'a, T, R, C> {
    /// The shape of the stored matrix.
    fn shape(&self) -> (R, C);
    /// Retrieve the i-th row index of the underlying row index buffer.
    ///
    /// # Safety
    /// No bound-checking is performed.
    unsafe fn row_index_unchecked(&self, i: usize) -> usize;
    /// The i-th value on the contiguous value buffer of this storage.
    ///
    /// # Safety
    /// No bound-checking is performed.
    unsafe fn get_value_unchecked(&self, i: usize) -> &T;
    /// The i-th value on the contiguous value buffer of this storage.
    fn get_value(&self, i: usize) -> &T;
    /// Retrieve the i-th row index of the underlying row index buffer.
    fn row_index(&self, i: usize) -> usize;
    /// The value indices for the `i`-th column.
    fn column_range(&self, i: usize) -> Range<usize>;
    /// The size of the value buffer (i.e. the entries known as possibly being non-zero).
    fn len(&self) -> usize;
}

/// Trait for compressed column sparse matrix mutable storage.
pub trait CsStorageMut<T, R, C = U1>:
    CsStorage<T, R, C> + for<'a> CsStorageIterMut<'a, T, R, C>
{
}

/// A storage of column-compressed sparse matrix based on a Vec.
#[derive(Clone, Debug, PartialEq)]
pub struct CsVecStorage<T: Scalar, R: Dim, C: Dim>
where
    DefaultAllocator: Allocator<usize, C>,
{
    pub(crate) shape: (R, C),
    pub(crate) p: OVector<usize, C>,
    pub(crate) i: Vec<usize>,
    pub(crate) vals: Vec<T>,
}

impl<T: Scalar, R: Dim, C: Dim> CsVecStorage<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    /// The value buffer of this storage.
    #[must_use]
    pub fn values(&self) -> &[T] {
        &self.vals
    }

    /// The column shifts buffer.
    #[must_use]
    pub fn p(&self) -> &[usize] {
        self.p.as_slice()
    }

    /// The row index buffers.
    #[must_use]
    pub fn i(&self) -> &[usize] {
        &self.i
    }
}

impl<T: Scalar, R: Dim, C: Dim> CsVecStorage<T, R, C> where DefaultAllocator: Allocator<usize, C> {}

impl<'a, T: Scalar, R: Dim, C: Dim> CsStorageIter<'a, T, R, C> for CsVecStorage<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    type ColumnEntries = ColumnEntries<'a, T>;
    type ColumnRowIndices = iter::Cloned<slice::Iter<'a, usize>>;

    #[inline]
    fn column_entries(&'a self, j: usize) -> Self::ColumnEntries {
        let rng = self.column_range(j);
        ColumnEntries::new(&self.i[rng.clone()], &self.vals[rng])
    }

    #[inline]
    fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices {
        let rng = self.column_range(j);
        self.i[rng].iter().cloned()
    }
}

impl<T: Scalar, R: Dim, C: Dim> CsStorage<T, R, C> for CsVecStorage<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    #[inline]
    fn shape(&self) -> (R, C) {
        self.shape
    }

    #[inline]
    fn len(&self) -> usize {
        self.vals.len()
    }

    #[inline]
    fn row_index(&self, i: usize) -> usize {
        self.i[i]
    }

    #[inline]
    unsafe fn row_index_unchecked(&self, i: usize) -> usize {
        *self.i.get_unchecked(i)
    }

    #[inline]
    unsafe fn get_value_unchecked(&self, i: usize) -> &T {
        self.vals.get_unchecked(i)
    }

    #[inline]
    fn get_value(&self, i: usize) -> &T {
        &self.vals[i]
    }

    #[inline]
    fn column_range(&self, j: usize) -> Range<usize> {
        let end = if j + 1 == self.p.len() {
            self.len()
        } else {
            self.p[j + 1]
        };

        self.p[j]..end
    }
}

impl<'a, T: Scalar, R: Dim, C: Dim> CsStorageIterMut<'a, T, R, C> for CsVecStorage<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    type ValuesMut = slice::IterMut<'a, T>;
    type ColumnEntriesMut = iter::Zip<iter::Cloned<slice::Iter<'a, usize>>, slice::IterMut<'a, T>>;

    #[inline]
    fn values_mut(&'a mut self) -> Self::ValuesMut {
        self.vals.iter_mut()
    }

    #[inline]
    fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut {
        let rng = self.column_range(j);
        self.i[rng.clone()]
            .iter()
            .cloned()
            .zip(self.vals[rng].iter_mut())
    }
}

impl<T: Scalar, R: Dim, C: Dim> CsStorageMut<T, R, C> for CsVecStorage<T, R, C> where
    DefaultAllocator: Allocator<usize, C>
{
}

/*
pub struct CsSliceStorage<'a, T: Scalar, R: Dim, C: DimAdd<U1>> {
    shape: (R, C),
    p: VectorSlice<usize, DimSum<C, U1>>,
    i: VectorSlice<usize, Dynamic>,
    vals: VectorSlice<T, Dynamic>,
}*/

/// A compressed sparse column matrix.
#[derive(Clone, Debug, PartialEq)]
pub struct CsMatrix<
    T: Scalar,
    R: Dim = Dynamic,
    C: Dim = Dynamic,
    S: CsStorage<T, R, C> = CsVecStorage<T, R, C>,
> {
    pub(crate) data: S,
    _phantoms: PhantomData<(T, R, C)>,
}

/// A column compressed sparse vector.
pub type CsVector<T, R = Dynamic, S = CsVecStorage<T, R, U1>> = CsMatrix<T, R, U1, S>;

impl<T: Scalar, R: Dim, C: Dim> CsMatrix<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    /// Creates a new compressed sparse column matrix with the specified dimension and
    /// `nvals` possible non-zero values.
    pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self {
        let mut i = Vec::with_capacity(nvals);
        unsafe {
            i.set_len(nvals);
        }
        i.shrink_to_fit();

        let mut vals = Vec::with_capacity(nvals);
        unsafe {
            vals.set_len(nvals);
        }
        vals.shrink_to_fit();

        CsMatrix {
            data: CsVecStorage {
                shape: (nrows, ncols),
                p: OVector::zeros_generic(ncols, Const::<1>),
                i,
                vals,
            },
            _phantoms: PhantomData,
        }
    }

    /*
    pub(crate) fn from_parts_generic(
        nrows: R,
        ncols: C,
        p: OVector<usize, C>,
        i: Vec<usize>,
        vals: Vec<T>,
    ) -> Self
    where
        T: Zero + ClosedAdd,
        DefaultAllocator: Allocator<T, R>,
    {
        assert_eq!(ncols.value(), p.len(), "Invalid inptr size.");
        assert_eq!(i.len(), vals.len(), "Invalid value size.");

        // Check p.
        for ptr in &p {
            assert!(*ptr < i.len(), "Invalid inptr value.");
        }

        for ptr in p.as_slice().windows(2) {
            assert!(ptr[0] <= ptr[1], "Invalid inptr ordering.");
        }

        // Check i.
        for i in &i {
            assert!(*i < nrows.value(), "Invalid row ptr value.")
        }

        let mut res = CsMatrix {
            data: CsVecStorage {
                shape: (nrows, ncols),
                p,
                i,
                vals,
            },
            _phantoms: PhantomData,
        };

        // Sort and remove duplicates.
        res.sort();
        res.dedup();

        res
    }*/
}

/*
impl<T: Scalar + Zero + ClosedAdd> CsMatrix<T> {
    pub(crate) fn from_parts(
        nrows: usize,
        ncols: usize,
        p: Vec<usize>,
        i: Vec<usize>,
        vals: Vec<T>,
    ) -> Self
    {
        let nrows = Dynamic::new(nrows);
        let ncols = Dynamic::new(ncols);
        let p = DVector::from_data(VecStorage::new(ncols, U1, p));
        Self::from_parts_generic(nrows, ncols, p, i, vals)
    }
}
*/

impl<T: Scalar, R: Dim, C: Dim, S: CsStorage<T, R, C>> CsMatrix<T, R, C, S> {
    pub(crate) fn from_data(data: S) -> Self {
        CsMatrix {
            data,
            _phantoms: PhantomData,
        }
    }

    /// The size of the data buffer.
    #[must_use]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// The number of rows of this matrix.
    #[must_use]
    pub fn nrows(&self) -> usize {
        self.data.shape().0.value()
    }

    /// The number of rows of this matrix.
    #[must_use]
    pub fn ncols(&self) -> usize {
        self.data.shape().1.value()
    }

    /// The shape of this matrix.
    #[must_use]
    pub fn shape(&self) -> (usize, usize) {
        let (nrows, ncols) = self.data.shape();
        (nrows.value(), ncols.value())
    }

    /// Whether this matrix is square or not.
    #[must_use]
    pub fn is_square(&self) -> bool {
        let (nrows, ncols) = self.data.shape();
        nrows.value() == ncols.value()
    }

    /// Should always return `true`.
    ///
    /// This method is generally used for debugging and should typically not be called in user code.
    /// This checks that the row inner indices of this matrix are sorted. It takes `O(n)` time,
    /// where n` is `self.len()`.
    /// All operations of CSC matrices on nalgebra assume, and will return, sorted indices.
    /// If at any time this `is_sorted` method returns `false`, then, something went wrong
    /// and an issue should be open on the nalgebra repository with details on how to reproduce
    /// this.
    #[must_use]
    pub fn is_sorted(&self) -> bool {
        for j in 0..self.ncols() {
            let mut curr = None;
            for idx in self.data.column_row_indices(j) {
                if let Some(curr) = curr {
                    if idx <= curr {
                        return false;
                    }
                }

                curr = Some(idx);
            }
        }

        true
    }

    /// Computes the transpose of this sparse matrix.
    #[must_use = "This function does not mutate the matrix. Consider using the return value or removing the function call. There's also transpose_mut() for square matrices."]
    pub fn transpose(&self) -> CsMatrix<T, C, R>
    where
        DefaultAllocator: Allocator<usize, R>,
    {
        let (nrows, ncols) = self.data.shape();

        let nvals = self.len();
        let mut res = CsMatrix::new_uninitialized_generic(ncols, nrows, nvals);
        let mut workspace = Vector::zeros_generic(nrows, Const::<1>);

        // Compute p.
        for i in 0..nvals {
            let row_id = self.data.row_index(i);
            workspace[row_id] += 1;
        }

        let _ = cs_utils::cumsum(&mut workspace, &mut res.data.p);

        // Fill the result.
        for j in 0..ncols.value() {
            for (row_id, value) in self.data.column_entries(j) {
                let shift = workspace[row_id];

                res.data.vals[shift] = value;
                res.data.i[shift] = j;
                workspace[row_id] += 1;
            }
        }

        res
    }
}

impl<T: Scalar, R: Dim, C: Dim, S: CsStorageMut<T, R, C>> CsMatrix<T, R, C, S> {
    /// Iterator through all the mutable values of this sparse matrix.
    #[inline]
    pub fn values_mut(&mut self) -> impl Iterator<Item = &mut T> {
        self.data.values_mut()
    }
}

impl<T: Scalar, R: Dim, C: Dim> CsMatrix<T, R, C>
where
    DefaultAllocator: Allocator<usize, C>,
{
    pub(crate) fn sort(&mut self)
    where
        T: Zero,
        DefaultAllocator: Allocator<T, R>,
    {
        // Size = R
        let nrows = self.data.shape().0;
        let mut workspace = Matrix::zeros_generic(nrows, Const::<1>);
        self.sort_with_workspace(workspace.as_mut_slice());
    }

    pub(crate) fn sort_with_workspace(&mut self, workspace: &mut [T]) {
        assert!(
            workspace.len() >= self.nrows(),
            "Workspace must be able to hold at least self.nrows() elements."
        );

        for j in 0..self.ncols() {
            // Scatter the row in the workspace.
            for (irow, val) in self.data.column_entries(j) {
                workspace[irow] = val;
            }

            // Sort the index vector.
            let range = self.data.column_range(j);
            self.data.i[range.clone()].sort_unstable();

            // Permute the values too.
            for (i, irow) in range.clone().zip(self.data.i[range].iter().cloned()) {
                self.data.vals[i] = workspace[irow].clone();
            }
        }
    }

    // Remove dupliate entries on a sorted CsMatrix.
    pub(crate) fn dedup(&mut self)
    where
        T: Zero + ClosedAdd,
    {
        let mut curr_i = 0;

        for j in 0..self.ncols() {
            let range = self.data.column_range(j);
            self.data.p[j] = curr_i;

            if range.start != range.end {
                let mut value = T::zero();
                let mut irow = self.data.i[range.start];

                for idx in range {
                    let curr_irow = self.data.i[idx];

                    if curr_irow == irow {
                        value += self.data.vals[idx].clone();
                    } else {
                        self.data.i[curr_i] = irow;
                        self.data.vals[curr_i] = value;
                        value = self.data.vals[idx].clone();
                        irow = curr_irow;
                        curr_i += 1;
                    }
                }

                // Handle the last entry.
                self.data.i[curr_i] = irow;
                self.data.vals[curr_i] = value;
                curr_i += 1;
            }
        }

        self.data.i.truncate(curr_i);
        self.data.i.shrink_to_fit();
        self.data.vals.truncate(curr_i);
        self.data.vals.shrink_to_fit();
    }
}