1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//! Isometric transformations.

#![allow(missing_docs)]

use std::ops::{Add, Sub, Mul, Neg};

use rand::{Rand, Rng};
use num::One;
use structs::mat::{Mat3, Mat4, Mat5};
use traits::structure::{Cast, Dim, Col, BaseFloat, BaseNum};
use traits::operations::{Inv, ApproxEq};
use traits::geometry::{RotationMatrix, Rotation, Rotate, AbsoluteRotate, Transform, Transformation,
                       Translate, Translation, ToHomogeneous};

use structs::vec::{Vec1, Vec2, Vec3, Vec4};
use structs::pnt::{Pnt2, Pnt3, Pnt4};
use structs::rot::{Rot2, Rot3, Rot4};

#[cfg(feature="arbitrary")]
use quickcheck::{Arbitrary, Gen};


/// Two dimensional isometry.
///
/// This is the composition of a rotation followed by a translation.
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub struct Iso2<N> {
    /// The rotation applicable by this isometry.
    pub rotation:    Rot2<N>,
    /// The translation applicable by this isometry.
    pub translation: Vec2<N>
}

/// Three dimensional isometry.
///
/// This is the composition of a rotation followed by a translation.
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub struct Iso3<N> {
    /// The rotation applicable by this isometry.
    pub rotation:    Rot3<N>,
    /// The translation applicable by this isometry.
    pub translation: Vec3<N>
}

/// Four dimensional isometry.
///
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub struct Iso4<N> {
    /// The rotation applicable by this isometry.
    pub rotation:    Rot4<N>,
    /// The translation applicable by this isometry.
    pub translation: Vec4<N>
}

impl<N: Clone + BaseFloat> Iso3<N> {
    /// Reorient and translate this transformation such that its local `x` axis points to a given
    /// direction.  Note that the usually known `look_at` function does the same thing but with the
    /// `z` axis. See `look_at_z` for that.
    ///
    /// # Arguments
    ///   * eye - The new translation of the transformation.
    ///   * at - The point to look at. `at - eye` is the direction the matrix `x` axis will be
    ///   aligned with.
    ///   * up - Vector pointing up. The only requirement of this parameter is to not be colinear
    ///   with `at`. Non-colinearity is not checked.
    pub fn look_at(&mut self, eye: &Pnt3<N>, at: &Pnt3<N>, up: &Vec3<N>) {
        self.rotation = Rot3::look_at(&(*at - *eye), up);
        self.translation = eye.as_vec().clone();
    }

    /// Reorient and translate this transformation such that its local `z` axis points to a given
    /// direction.
    ///
    /// # Arguments
    ///   * eye - The new translation of the transformation.
    ///   * at - The point to look at. `at - eye` is the direction the matrix `x` axis will be
    ///   aligned with
    ///   * up - Vector pointing `up`. The only requirement of this parameter is to not be colinear
    ///   with `at`. Non-colinearity is not checked.
    pub fn look_at_z(&mut self, eye: &Pnt3<N>, at: &Pnt3<N>, up: &Vec3<N>) {
        self.rotation = Rot3::look_at_z(&(*at - *eye), up);
        self.translation = eye.as_vec().clone();
    }
}

impl<N> Iso4<N> {
    // XXX remove that when iso_impl works for Iso4
    /// Creates a new isometry from a rotation matrix and a vector.
    #[inline]
    pub fn new_with_rotmat(translation: Vec4<N>, rotation: Rot4<N>) -> Iso4<N> {
        Iso4 {
            rotation:    rotation,
            translation: translation
        }
    }
}

iso_impl!(Iso2, Rot2, Vec2, Vec1);
rotation_matrix_impl!(Iso2, Rot2, Vec2, Vec1);
rotation_impl!(Iso2, Rot2, Vec1);
dim_impl!(Iso2, 2);
one_impl!(Iso2);
absolute_rotate_impl!(Iso2, Vec2);
rand_impl!(Iso2);
approx_eq_impl!(Iso2);
to_homogeneous_impl!(Iso2, Mat3);
inv_impl!(Iso2);
transform_impl!(Iso2, Pnt2);
transformation_impl!(Iso2);
rotate_impl!(Iso2, Vec2);
translation_impl!(Iso2, Vec2);
translate_impl!(Iso2, Pnt2);
iso_mul_iso_impl!(Iso2);
iso_mul_pnt_impl!(Iso2, Pnt2);
pnt_mul_iso_impl!(Iso2, Pnt2);
arbitrary_iso_impl!(Iso2);

iso_impl!(Iso3, Rot3, Vec3, Vec3);
rotation_matrix_impl!(Iso3, Rot3, Vec3, Vec3);
rotation_impl!(Iso3, Rot3, Vec3);
dim_impl!(Iso3, 3);
one_impl!(Iso3);
absolute_rotate_impl!(Iso3, Vec3);
rand_impl!(Iso3);
approx_eq_impl!(Iso3);
to_homogeneous_impl!(Iso3, Mat4);
inv_impl!(Iso3);
transform_impl!(Iso3, Pnt3);
transformation_impl!(Iso3);
rotate_impl!(Iso3, Vec3);
translation_impl!(Iso3, Vec3);
translate_impl!(Iso3, Pnt3);
iso_mul_iso_impl!(Iso3);
iso_mul_pnt_impl!(Iso3, Pnt3);
pnt_mul_iso_impl!(Iso3, Pnt3);
arbitrary_iso_impl!(Iso3);

// iso_impl!(Iso4, Rot4, Vec4, Vec4);
// rotation_matrix_impl!(Iso4, Rot4, Vec4, Vec4);
// rotation_impl!(Iso4, Rot4, Vec4);
dim_impl!(Iso4, 4);
one_impl!(Iso4);
absolute_rotate_impl!(Iso4, Vec4);
// rand_impl!(Iso4);
approx_eq_impl!(Iso4);
to_homogeneous_impl!(Iso4, Mat5);
inv_impl!(Iso4);
transform_impl!(Iso4, Pnt4);
transformation_impl!(Iso4);
rotate_impl!(Iso4, Vec4);
translation_impl!(Iso4, Vec4);
translate_impl!(Iso4, Pnt4);
iso_mul_iso_impl!(Iso4);
iso_mul_pnt_impl!(Iso4, Pnt4);
pnt_mul_iso_impl!(Iso4, Pnt4);
// FIXME: as soon as Rot4<N>: Arbitrary
// arbitrary_iso_impl!(Iso4);