1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use std::any::Any;
use std::fmt::Debug;
use std::marker::PhantomData;

#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};

use alga::general::Real;

use base::{DefaultAllocator, MatrixN};
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::storage::Owned;
use base::allocator::Allocator;

/// Trait implemented by phantom types identifying the projective transformation type.
///
/// NOTE: this trait is not intended to be implementable outside of the `nalgebra` crate.
pub trait TCategory: Any + Debug + Copy + PartialEq + Send {
    /// Indicates whether a `Transform` with the category `Self` has a bottom-row different from
    /// `0 0 .. 1`.
    #[inline]
    fn has_normalizer() -> bool {
        true
    }

    /// Checks that the given matrix is a valid homogeneous representation of an element of the
    /// category `Self`.
    fn check_homogeneous_invariants<N: Real, D: DimName>(mat: &MatrixN<N, D>) -> bool
    where
        N::Epsilon: Copy,
        DefaultAllocator: Allocator<N, D, D>;
}

/// Traits that gives the `Transform` category that is compatible with the result of the
/// multiplication of transformations with categories `Self` and `Other`.
pub trait TCategoryMul<Other: TCategory>: TCategory {
    /// The transform category that results from the multiplication of a `Transform<Self>` to a
    /// `Transform<Other>`. This is usually equal to `Self` or `Other`, whichever is the most
    /// general category.
    type Representative: TCategory;
}

/// Indicates that `Self` is a more general `Transform` category than `Other`.
pub trait SuperTCategoryOf<Other: TCategory>: TCategory {}

/// Indicates that `Self` is a more specific `Transform` category than `Other`.
///
/// Automatically implemented based on `SuperTCategoryOf`.
pub trait SubTCategoryOf<Other: TCategory>: TCategory {}
impl<T1, T2> SubTCategoryOf<T2> for T1
where
    T1: TCategory,
    T2: SuperTCategoryOf<T1>,
{
}

/// Tag representing the most general (not necessarily inversible) `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TGeneral {
}

/// Tag representing the most general inversible `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TProjective {
}

/// Tag representing an affine `Transform`. Its bottom-row is equal to `(0, 0 ... 0, 1)`.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TAffine {
}

impl TCategory for TGeneral {
    #[inline]
    fn check_homogeneous_invariants<N: Real, D: DimName>(_: &MatrixN<N, D>) -> bool
    where
        N::Epsilon: Copy,
        DefaultAllocator: Allocator<N, D, D>,
    {
        true
    }
}

impl TCategory for TProjective {
    #[inline]
    fn check_homogeneous_invariants<N: Real, D: DimName>(mat: &MatrixN<N, D>) -> bool
    where
        N::Epsilon: Copy,
        DefaultAllocator: Allocator<N, D, D>,
    {
        mat.is_invertible()
    }
}

impl TCategory for TAffine {
    #[inline]
    fn has_normalizer() -> bool {
        false
    }

    #[inline]
    fn check_homogeneous_invariants<N: Real, D: DimName>(mat: &MatrixN<N, D>) -> bool
    where
        N::Epsilon: Copy,
        DefaultAllocator: Allocator<N, D, D>,
    {
        let last = D::dim() - 1;
        mat.is_invertible() && mat[(last, last)] == N::one()
            && (0..last).all(|i| mat[(last, i)].is_zero())
    }
}

macro_rules! category_mul_impl(
    ($($a: ident * $b: ident => $c: ty);* $(;)*) => {$(
        impl TCategoryMul<$a> for $b {
            type Representative = $c;
        }
    )*}
);

// We require stability uppon multiplication.
impl<T: TCategory> TCategoryMul<T> for T {
    type Representative = T;
}

category_mul_impl!(
//  TGeneral * TGeneral    => TGeneral;
    TGeneral * TProjective => TGeneral;
    TGeneral * TAffine     => TGeneral;

    TProjective * TGeneral    => TGeneral;
//  TProjective * TProjective => TProjective;
    TProjective * TAffine     => TProjective;

    TAffine * TGeneral    => TGeneral;
    TAffine * TProjective => TProjective;
//  TAffine * TAffine     => TAffine;
);

macro_rules! super_tcategory_impl(
    ($($a: ident >= $b: ident);* $(;)*) => {$(
        impl SuperTCategoryOf<$b> for $a { }
    )*}
);

impl<T: TCategory> SuperTCategoryOf<T> for T {}

super_tcategory_impl!(
    TGeneral    >= TProjective;
    TGeneral    >= TAffine;
    TProjective >= TAffine;
);

/// A transformation matrix in homogeneous coordinates.
///
/// It is stored as a matrix with dimensions `(D + 1, D + 1)`, e.g., it stores a 4x4 matrix for a
/// 3D transformation.
#[repr(C)]
#[derive(Debug)]
pub struct Transform<N: Real, D: DimNameAdd<U1>, C: TCategory>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    matrix: MatrixN<N, DimNameSum<D, U1>>,
    _phantom: PhantomData<C>,
}

// FIXME
// impl<N: Real + hash::Hash, D: DimNameAdd<U1> + hash::Hash, C: TCategory> hash::Hash for Transform<N, D, C>
//     where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
//           Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: hash::Hash {
//     fn hash<H: hash::Hasher>(&self, state: &mut H) {
//         self.matrix.hash(state);
//     }
// }

impl<N: Real, D: DimNameAdd<U1> + Copy, C: TCategory> Copy for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Copy,
{
}

impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Clone for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    #[inline]
    fn clone(&self) -> Self {
        Transform::from_matrix_unchecked(self.matrix.clone())
    }
}

#[cfg(feature = "serde-serialize")]
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Serialize for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.matrix.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'a, N: Real, D: DimNameAdd<U1>, C: TCategory> Deserialize<'a> for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let matrix = MatrixN::<N, DimNameSum<D, U1>>::deserialize(deserializer)?;

        Ok(Transform::from_matrix_unchecked(matrix))
    }
}

impl<N: Real + Eq, D: DimNameAdd<U1>, C: TCategory> Eq for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
}

impl<N: Real, D: DimNameAdd<U1>, C: TCategory> PartialEq for Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.matrix == right.matrix
    }
}

impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    /// Creates a new transformation from the given homogeneous matrix. The transformation category
    /// of `Self` is not checked to be verified by the given matrix.
    #[inline]
    pub fn from_matrix_unchecked(matrix: MatrixN<N, DimNameSum<D, U1>>) -> Self {
        Transform {
            matrix: matrix,
            _phantom: PhantomData,
        }
    }

    /// The underlying matrix.
    #[inline]
    pub fn unwrap(self) -> MatrixN<N, DimNameSum<D, U1>> {
        self.matrix
    }

    /// A reference to the underlying matrix.
    #[inline]
    pub fn matrix(&self) -> &MatrixN<N, DimNameSum<D, U1>> {
        &self.matrix
    }

    /// A mutable reference to the underlying matrix.
    ///
    /// It is `_unchecked` because direct modifications of this matrix may break invariants
    /// identified by this transformation category.
    #[inline]
    pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, DimNameSum<D, U1>> {
        &mut self.matrix
    }

    /// Sets the category of this transform.
    ///
    /// This can be done only if the new category is more general than the current one, e.g., a
    /// transform with category `TProjective` cannot be converted to a transform with category
    /// `TAffine` because not all projective transformations are affine (the other way-round is
    /// valid though).
    #[inline]
    pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> Transform<N, D, CNew> {
        Transform::from_matrix_unchecked(self.matrix)
    }

    /// Clones this transform into one that owns its data.
    #[inline]
    #[deprecated(note = "This method is a no-op and will be removed in a future release.")]
    pub fn clone_owned(&self) -> Transform<N, D, C> {
        Transform::from_matrix_unchecked(self.matrix.clone_owned())
    }

    /// Converts this transform into its equivalent homogeneous transformation matrix.
    #[inline]
    pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> {
        self.matrix().clone_owned()
    }

    /// Attempts to invert this transformation. You may use `.inverse` instead of this
    /// transformation has a subcategory of `TProjective`.
    #[inline]
    pub fn try_inverse(self) -> Option<Transform<N, D, C>> {
        if let Some(m) = self.matrix.try_inverse() {
            Some(Transform::from_matrix_unchecked(m))
        } else {
            None
        }
    }

    /// Inverts this transformation. Use `.try_inverse` if this transform has the `TGeneral`
    /// category (it may not be invertible).
    #[inline]
    pub fn inverse(self) -> Transform<N, D, C>
    where
        C: SubTCategoryOf<TProjective>,
    {
        // FIXME: specialize for TAffine?
        Transform::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
    }

    /// Attempts to invert this transformation in-place. You may use `.inverse_mut` instead of this
    /// transformation has a subcategory of `TProjective`.
    #[inline]
    pub fn try_inverse_mut(&mut self) -> bool {
        self.matrix.try_inverse_mut()
    }

    /// Inverts this transformation in-place. Use `.try_inverse_mut` if this transform has the
    /// `TGeneral` category (it may not be invertible).
    #[inline]
    pub fn inverse_mut(&mut self)
    where
        C: SubTCategoryOf<TProjective>,
    {
        let _ = self.matrix.try_inverse_mut();
    }
}

impl<N: Real, D: DimNameAdd<U1>> Transform<N, D, TGeneral>
where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    /// A mutable reference to underlying matrix. Use `.matrix_mut_unchecked` instead if this
    /// transformation category is not `TGeneral`.
    #[inline]
    pub fn matrix_mut(&mut self) -> &mut MatrixN<N, DimNameSum<D, U1>> {
        self.matrix_mut_unchecked()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use base::Matrix4;

    #[test]
    fn checks_homogeneous_invariants_of_square_identity_matrix() {
        assert!(TAffine::check_homogeneous_invariants(
            &Matrix4::<f32>::identity()
        ));
    }
}