1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};

#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};

#[cfg(feature = "serde-serialize")]
use base::storage::Owned;

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use alga::general::Real;

use base::allocator::Allocator;
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::{DefaultAllocator, MatrixN, Scalar};

/// A rotation matrix.
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    matrix: MatrixN<N, D>,
}

impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.matrix.hash(state)
    }
}

impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
{
}

impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
{
    #[inline]
    fn clone(&self) -> Self {
        Rotation::from_matrix_unchecked(self.matrix.clone())
    }
}

#[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Rotation<N, D>
where
    N: Scalar,
    D: DimName,
    MatrixN<N, D>: Abomonation,
    DefaultAllocator: Allocator<N, D, D>,
{
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.matrix.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.matrix.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.matrix.exhume(bytes)
    }
}

#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    Owned<N, D, D>: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.matrix.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    Owned<N, D, D>: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let matrix = MatrixN::<N, D>::deserialize(deserializer)?;

        Ok(Rotation::from_matrix_unchecked(matrix))
    }
}

impl<N: Scalar, D: DimName> Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    /// A reference to the underlying matrix representation of this rotation.
    #[inline]
    pub fn matrix(&self) -> &MatrixN<N, D> {
        &self.matrix
    }

    /// A mutable reference to the underlying matrix representation of this rotation.
    ///
    /// This is unsafe because this allows the user to replace the matrix by another one that is
    /// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
    /// subsequent method calls may be UB.
    #[inline]
    pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
        &mut self.matrix
    }

    /// Unwraps the underlying matrix.
    #[inline]
    pub fn unwrap(self) -> MatrixN<N, D> {
        self.matrix
    }

    /// Converts this rotation into its equivalent homogeneous transformation matrix.
    #[inline]
    pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
    where
        N: Zero + One,
        D: DimNameAdd<U1>,
        DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    {
        let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
        res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);

        res
    }

    /// Creates a new rotation from the given square matrix.
    ///
    /// The matrix squareness is checked but not its orthonormality.
    #[inline]
    pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
        assert!(
            matrix.is_square(),
            "Unable to create a rotation from a non-square matrix."
        );

        Rotation { matrix: matrix }
    }

    /// Transposes `self`.
    #[inline]
    pub fn transpose(&self) -> Rotation<N, D> {
        Rotation::from_matrix_unchecked(self.matrix.transpose())
    }

    /// Inverts `self`.
    #[inline]
    pub fn inverse(&self) -> Rotation<N, D> {
        self.transpose()
    }

    /// Transposes `self` in-place.
    #[inline]
    pub fn transpose_mut(&mut self) {
        self.matrix.transpose_mut()
    }

    /// Inverts `self` in-place.
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.transpose_mut()
    }
}

impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
}

impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    #[inline]
    fn eq(&self, right: &Rotation<N, D>) -> bool {
        self.matrix == right.matrix
    }
}

impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
where
    N: Scalar + AbsDiffEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    type Epsilon = N::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        N::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.matrix.abs_diff_eq(&other.matrix, epsilon)
    }
}

impl<N, D: DimName> RelativeEq for Rotation<N, D>
where
    N: Scalar + RelativeEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        N::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.matrix
            .relative_eq(&other.matrix, epsilon, max_relative)
    }
}

impl<N, D: DimName> UlpsEq for Rotation<N, D>
where
    N: Scalar + UlpsEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        N::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
    }
}

/*
 *
 * Display
 *
 */
impl<N, D: DimName> fmt::Display for Rotation<N, D>
where
    N: Real + fmt::Display,
    DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let precision = f.precision().unwrap_or(3);

        try!(writeln!(f, "Rotation matrix {{"));
        try!(write!(f, "{:.*}", precision, self.matrix));
        writeln!(f, "}}")
    }
}

//          //         /*
//          //          *
//          //          * Absolute
//          //          *
//          //          */
//          //         impl<N: Absolute> Absolute for $t<N> {
//          //             type AbsoluteValue = $submatrix<N::AbsoluteValue>;
//          //
//          //             #[inline]
//          //             fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
//          //                 Absolute::abs(&m.submatrix)
//          //             }
//          //         }