1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#[cfg(feature = "arbitrary")]
use base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};

use num::One;
use rand::distributions::{Distribution, Standard};
use rand::Rng;

use alga::general::Real;
use alga::linear::Rotation as AlgaRotation;

use base::allocator::Allocator;
use base::dimension::{DimName, U2, U3};
use base::{DefaultAllocator, Vector2, Vector3};

use geometry::{
    Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation, UnitComplex,
    UnitQuaternion,
};

impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// Creates a new identity isometry.
    #[inline]
    pub fn identity() -> Self {
        Self::from_parts(Translation::identity(), R::identity())
    }

    /// The isometry that applies the rotation `r` with its axis passing through the point `p`.
    /// This effectively lets `p` invariant.
    #[inline]
    pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self {
        let shift = r.transform_vector(&-&p.coords);
        Self::from_parts(Translation::from_vector(shift + p.coords), r)
    }
}

impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// Creates a new identity isometry.
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

impl<N: Real, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard
where
    R: AlgaRotation<Point<N, D>>,
    Standard: Distribution<N> + Distribution<R>,
    DefaultAllocator: Allocator<N, D>,
{
    #[inline]
    fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Isometry<N, D, R> {
        Isometry::from_parts(rng.gen(), rng.gen())
    }
}

#[cfg(feature = "arbitrary")]
impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R>
where
    N: Real + Arbitrary + Send,
    R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
    Owned<N, D>: Send,
    DefaultAllocator: Allocator<N, D>,
{
    #[inline]
    fn arbitrary<G: Gen>(rng: &mut G) -> Self {
        Self::from_parts(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng))
    }
}

/*
 *
 * Constructors for various static dimensions.
 *
 */

// 2D rotation.
impl<N: Real> Isometry<N, U2, Rotation2<N>> {
    /// Creates a new isometry from a translation and a rotation angle.
    #[inline]
    pub fn new(translation: Vector2<N>, angle: N) -> Self {
        Self::from_parts(
            Translation::from_vector(translation),
            Rotation::<N, U2>::new(angle),
        )
    }
}

impl<N: Real> Isometry<N, U2, UnitComplex<N>> {
    /// Creates a new isometry from a translation and a rotation angle.
    #[inline]
    pub fn new(translation: Vector2<N>, angle: N) -> Self {
        Self::from_parts(
            Translation::from_vector(translation),
            UnitComplex::from_angle(angle),
        )
    }
}

// 3D rotation.
macro_rules! isometry_construction_impl(
    ($RotId: ident < $($RotParams: ident),*>, $RRDim: ty, $RCDim: ty) => {
        impl<N: Real> Isometry<N, U3, $RotId<$($RotParams),*>> {
            /// Creates a new isometry from a translation and a rotation axis-angle.
            #[inline]
            pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self {
                Self::from_parts(
                    Translation::from_vector(translation),
                    $RotId::<$($RotParams),*>::from_scaled_axis(axisangle))
            }

            /// Creates an isometry that corresponds to the local frame of an observer standing at the
            /// point `eye` and looking toward `target`.
            ///
            /// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
            /// `eye`.
            ///
            /// # Arguments
            ///   * eye - The observer position.
            ///   * target - The target position.
            ///   * up - Vertical direction. The only requirement of this parameter is to not be collinear
            ///   to `eye - at`. Non-collinearity is not checked.
            #[inline]
            pub fn new_observer_frame(eye:    &Point3<N>,
                                      target: &Point3<N>,
                                      up:     &Vector3<N>)
                                      -> Self {
                Self::from_parts(
                    Translation::from_vector(eye.coords.clone()),
                    $RotId::new_observer_frame(&(target - eye), up))
            }

            /// Builds a right-handed look-at view matrix.
            ///
            /// This conforms to the common notion of right handed look-at matrix from the computer
            /// graphics community.
            ///
            /// # Arguments
            ///   * eye - The eye position.
            ///   * target - The target position.
            ///   * up - A vector approximately aligned with required the vertical axis. The only
            ///   requirement of this parameter is to not be collinear to `target - eye`.
            #[inline]
            pub fn look_at_rh(eye:    &Point3<N>,
                              target: &Point3<N>,
                              up:     &Vector3<N>)
                              -> Self {
                let rotation = $RotId::look_at_rh(&(target - eye), up);
                let trans    = &rotation * (-eye);

                Self::from_parts(Translation::from_vector(trans.coords), rotation)
            }

            /// Builds a left-handed look-at view matrix.
            ///
            /// This conforms to the common notion of left handed look-at matrix from the computer
            /// graphics community.
            ///
            /// # Arguments
            ///   * eye - The eye position.
            ///   * target - The target position.
            ///   * up - A vector approximately aligned with required the vertical axis. The only
            ///   requirement of this parameter is to not be collinear to `target - eye`.
            #[inline]
            pub fn look_at_lh(eye:    &Point3<N>,
                              target: &Point3<N>,
                              up:     &Vector3<N>)
                              -> Self {
                let rotation = $RotId::look_at_lh(&(target - eye), up);
                let trans    = &rotation * (-eye);

                Self::from_parts(Translation::from_vector(trans.coords), rotation)
            }
        }
    }
);

isometry_construction_impl!(Rotation3<N>, U3, U3);
isometry_construction_impl!(UnitQuaternion<N>, U4, U1);