1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::marker::PhantomData;

#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize};

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use alga::general::{Real, SubsetOf};
use alga::linear::Rotation;

use base::allocator::Allocator;
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::storage::Owned;
use base::{DefaultAllocator, MatrixN};
use geometry::{Point, Translation};

/// A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize",
    serde(
        bound(
            serialize = "R: Serialize,
                     DefaultAllocator: Allocator<N, D>,
                     Owned<N, D>: Serialize"
        )
    )
)]
#[cfg_attr(
    feature = "serde-serialize",
    serde(
        bound(
            deserialize = "R: Deserialize<'de>,
                       DefaultAllocator: Allocator<N, D>,
                       Owned<N, D>: Deserialize<'de>"
        )
    )
)]
pub struct Isometry<N: Real, D: DimName, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// The pure rotational part of this isometry.
    pub rotation: R,
    /// The pure translational part of this isometry.
    pub translation: Translation<N, D>,

    // One dummy private field just to prevent explicit construction.
    #[cfg_attr(feature = "serde-serialize", serde(skip_serializing, skip_deserializing))]
    _noconstruct: PhantomData<N>,
}

#[cfg(feature = "abomonation-serialize")]
impl<N, D, R> Abomonation for Isometry<N, D, R>
where
    N: Real,
    D: DimName,
    R: Abomonation,
    Translation<N, D>: Abomonation,
    DefaultAllocator: Allocator<N, D>,
{
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.rotation.entomb(writer)?;
        self.translation.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.rotation.extent() + self.translation.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.rotation
            .exhume(bytes)
            .and_then(|bytes| self.translation.exhume(bytes))
    }
}

impl<N: Real + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash for Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.translation.hash(state);
        self.rotation.hash(state);
    }
}

impl<N: Real, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Copy,
{
}

impl<N: Real, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    #[inline]
    fn clone(&self) -> Self {
        Isometry::from_parts(self.translation.clone(), self.rotation.clone())
    }
}

impl<N: Real, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// Creates a new isometry from its rotational and translational parts.
    #[inline]
    pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Isometry<N, D, R> {
        Isometry {
            rotation: rotation,
            translation: translation,
            _noconstruct: PhantomData,
        }
    }

    /// Inverts `self`.
    #[inline]
    pub fn inverse(&self) -> Isometry<N, D, R> {
        let mut res = self.clone();
        res.inverse_mut();
        res
    }

    /// Inverts `self`.
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.rotation.inverse_mut();
        self.translation.inverse_mut();
        self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
    }

    /// Appends to `self` the given translation in-place.
    #[inline]
    pub fn append_translation_mut(&mut self, t: &Translation<N, D>) {
        self.translation.vector += &t.vector
    }

    /// Appends to `self` the given rotation in-place.
    #[inline]
    pub fn append_rotation_mut(&mut self, r: &R) {
        self.rotation = self.rotation.append_rotation(&r);
        self.translation.vector = r.transform_vector(&self.translation.vector);
    }

    /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
    /// lets `p` invariant.
    #[inline]
    pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>) {
        self.translation.vector -= &p.coords;
        self.append_rotation_mut(r);
        self.translation.vector += &p.coords;
    }

    /// Appends in-place to `self` a rotation centered at the point with coordinates
    /// `self.translation`.
    #[inline]
    pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
        let center = Point::from_coordinates(self.translation.vector.clone());
        self.append_rotation_wrt_point_mut(r, &center)
    }
}

// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
impl<N: Real, D: DimName, R> Isometry<N, D, R>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// Converts this isometry into its equivalent homogeneous transformation matrix.
    #[inline]
    pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
    where
        D: DimNameAdd<U1>,
        R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
        DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    {
        let mut res: MatrixN<N, _> = ::convert_ref(&self.rotation);
        res.fixed_slice_mut::<D, U1>(0, D::dim())
            .copy_from(&self.translation.vector);

        res
    }
}

impl<N: Real, D: DimName, R> Eq for Isometry<N, D, R>
where
    R: Rotation<Point<N, D>> + Eq,
    DefaultAllocator: Allocator<N, D>,
{
}

impl<N: Real, D: DimName, R> PartialEq for Isometry<N, D, R>
where
    R: Rotation<Point<N, D>> + PartialEq,
    DefaultAllocator: Allocator<N, D>,
{
    #[inline]
    fn eq(&self, right: &Isometry<N, D, R>) -> bool {
        self.translation == right.translation && self.rotation == right.rotation
    }
}

impl<N: Real, D: DimName, R> AbsDiffEq for Isometry<N, D, R>
where
    R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy,
{
    type Epsilon = N::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        N::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.translation.abs_diff_eq(&other.translation, epsilon)
            && self.rotation.abs_diff_eq(&other.rotation, epsilon)
    }
}

impl<N: Real, D: DimName, R> RelativeEq for Isometry<N, D, R>
where
    R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        N::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.translation
            .relative_eq(&other.translation, epsilon, max_relative)
            && self
                .rotation
                .relative_eq(&other.rotation, epsilon, max_relative)
    }
}

impl<N: Real, D: DimName, R> UlpsEq for Isometry<N, D, R>
where
    R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        N::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.translation
            .ulps_eq(&other.translation, epsilon, max_ulps)
            && self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
    }
}

/*
 *
 * Display
 *
 */
impl<N: Real + fmt::Display, D: DimName, R> fmt::Display for Isometry<N, D, R>
where
    R: fmt::Display,
    DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let precision = f.precision().unwrap_or(3);

        try!(writeln!(f, "Isometry {{"));
        try!(write!(f, "{:.*}", precision, self.translation));
        try!(write!(f, "{:.*}", precision, self.rotation));
        writeln!(f, "}}")
    }
}